Коротко о главном Средний уровень

Проценты. Средний уровень.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Пройти пробный ЕГЭ 2018Пройти пробный ОГЭ 2018

Знаю: наверняка ты терпеть не можешь слово «процент». Но это чувство у тебя скоро исчезнет. Чтобы это произошло, разберем такой вопрос:

Что такое процент?

Откуда взялось это слово?

Все очень просто. Слово процент произошло от латинского per cent– на сотню, и означает оно «сотая доля» или «сотая часть». То есть один процент любого числа – это одна сотая этого числа.

Процент от числа

И все. Этого достаточно, чтобы решать задачи, в которых присутствует это противное слово «процент».

Например: чему равны   от числа  ?

Прочтем это задание по-другому: чему равны   сотых доли числа  ? Элементарно, правда? Нужно разделить число   на   частей (чтобы узнать, чему равна одна сотая доля – один процент) и взять   таких части:

 .

Сколько процентов содержится в числе?

Снова перефразируем вопрос, заменив слово «процент» на «сотую часть»: Сколько сотых частей находится в числе? Ответ сразу становится очевидным: в любом числе или предмете находится ровно сто сотых частей (то есть, если разделить число или предмет на   частей, сколько будет этих частей? Очевидно же, что  ).

Разберем еще несколько примеров.

  1. Чему равны   от числа  ?
  2. Чему равно число,   которого равны  ?
  3. Сколько процентов составляет число   от числа  ?

Решения:

1) И снова избавимся от слова «процент». Получим такой вопрос:

Чему равны   сотых числа  ?

 .

Может показаться странным, что у нас целых   – ведь мы уже выяснили, что в числе всего  . Но с математической точки зрения ничего странного, ведь процент – это всего лишь одна сотая от числа. Почему нельзя одну сотую числа взять   раз? Можно, ведь по сути это – просто число.

2) Итак,   от числа равны  . Можем составить простенькое уравнение:

 .

Ты заметил, что я сразу же вместо   написал  ? И правда, один процент – это одна сотая, а значит,   процентов – это   сотых. Ты можешь тоже так делать.

3) Обозначим искомое количество процентов буквой  . Тогда   от числа   равно  . Или, что то же самое,   сотых от числа   равно  :

 .

Ответ:  .

Проценты и десятичные дроби

В разобранных выше примерах мы убедились, что вместо знака процента % можно писать  , или просто разделить на  . То есть,   – это то же самое, что  ;   – это   и так далее. Но ведь любую из этих дробей можно записать компактнее: в виде десятичной дроби.

Например:

 ;

 ;

 ,

и так далее.

Значит, проценты можно записать в виде десятичной дроби.

Правило перевода такое: сколько бы ни было процентов, смещаем десятичную запятую на два знака влево и убираем значок % – и таким образом получаем обычное число. Данное правило будем теперь всегда применять сразу.

Например:

1) Чему равны   от числа  ?

Вместо   напишем что?  . Итак,  .

2)   от какого числа равны  ?

 .

Изменение числа на сколько-то процентов

Когда говорят, что число увеличилось на  , это значит, что к числу надо прибавить  .

Если же число уменьшилось на  , это значит, что из числа надо вычесть  .

Рассмотрим пример:

Цена холодильника в магазине за год увеличилась на  . Какой стала цена, если изначально холодильник стоил  р?

Решение:

Для начала определим, на сколько рублей изменилась (в данном случае – увеличилась) стоимость холодильника. По условию – на  . Но   от чего? Конечно же, от самой начальной стоимости холодильника (  р). Получается, что нам нужно найти   от  р:

 .

Теперь мы знаем, что цена увеличилась на  р. Остается только, согласно правилу, прибавить к начальной стоимости величину изменения:

Новая цена   рублей.

Ответ:  

Еще пример (постарайся решить самостоятельно):

Книга «Математика для чайников» в магазине стоит  р. Во время акции все книги продаются со скидкой  . Сколько теперь придется заплатить за эту книгу?

Решение:

Что такое скидка, ты наверняка знаешь? Скидка в   означает, что стоимость товара уменьшили на  .

На сколько уменьшилась стоимость книги (в рублях)? Нужно найти   от начальной ее стоимости в  р:

 .

Цена уменьшилась, значит нужно из начальной стоимости вычесть то, на сколько она уменьшилась:

Новая цена   рублей.

Ответ:  .

Правда ведь просто?

Но есть способ сделать это решение еще проще и короче!

Рассмотрим пример:

Увеличьте число   на  .

Чему равны   от  ? Как мы уже выяснили раньше, это будет  .

Теперь увеличим само число x на эту величину:

 .

Получается, что в результате мы к десятичной записи   прибавили   и умножили на число  . Обобщим это правило:

Пусть нам нужно увеличить число   на  .

  от числа   – это  .

Тогда новое число будет равно:  .

Итак,

Чтобы увеличить число на  , нужно умножить его на  .

Например, увеличим число   на  :

 .

А теперь попробуй сам:

  1. Увеличить число   на  
  2. Увеличить число   на  
  3. На сколько процентов число   больше числа  ?

Решения:

  1.  
  2.  

3) Пусть искомое количество процентов равно  . Это значит, что если число   увеличить на  , получится  :

 

Ответ: на  .

Если число x надо уменьшить на  , все аналогично:

  от  

Уменьшить число на какую-то величину – значит вычесть из него эту величину:

 .

Итак, правило:

Чтобы уменьшить число на  , нужно умножить его на  .

Примеры:

1) Уменьшить число   на  .

2) На сколько процентов число   меньше числа  ?

3) Цена товара со скидкой в   равна  р. Чему равна цена без скидки?

Решения:

1)  .

2) Число   уменьшили на x процентов и получили  :

 .

Ответ: на  .

3) Пусть цена без скидки равна  . Получается, что x уменьшили на   и получили  :

  (рублей).

Ответ:  .

Напоследок рассмотрим еще один тип задач, частенько вызывающих недоумение:

Число   больше числа   на  . На сколько процентов число   меньше числа  ?

Что за странный вопрос: конечно же на  ! Правильно?

А вот и нет. Если, например, масса одного шкафа на 25 кг больше массы другого, то, без сомнения, масса второго шкафа на 25 кг меньше массы первого. Но с процентами так не прокатит! Ведь в первом случае, когда говорим, что число   на   больше числа  , мы считаем   от числа  ; а во втором случае, когда говорим, что число   на   меньше числа  , мы считаем   от числа  . А поскольку числа   и   разные, то и   от этих чисел будут разными!

Чтобы решить эту задачу верно, давай запишем условие в виде уравнения:

Число   больше числа   на  . Это значит, что если число   увеличить на  , получим число  :

 . (1)

Теперь в таком ж виде запишем вопрос: если число a уменьшить на   процентов, получим число  :

 . (2)

Выразим число   из равенства (1):

 

И подставим в (2):

 .

Отсюда следует, что:

  (%).

Итак, получаем, что число   на   меньше числа  !

Подобные задачи часто попадаются в ЕГЭ.

Например:

В понедельник акции компании подорожали на некоторое число процентов, а во вторник подешевели на то же самое число процентов. В результате они стали стоить на   дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?

Решение:

Пусть цена акции в понедельник была равна  , а искомое количество процентов, записанное в виде десятичной дроби (то есть, уже поделенное на  ), равно  .

Запишем формулой, чему равна стоимость акции после подорожания:

 .

Далее, эту новую стоимость   уменьшили на   процентов:

 .

При этом известно, что эта конечная цена   на   меньше начальной цены  . То есть, если уменьшить   на  , получим  :

 

Подставим  , выраженное ранее:

 .

Согласно здравому смыслу подходит только положительное решение:

 .

Вспомним теперь, что это пока только десятичная запись искомого количества процентов, то есть это количество процентов, деленное на  . Чтобы перевести в проценты, нужно домножить на 100%:

 

Заключение

Ну что же, теперь подведем итоги:

· Процент – это сотая часть, или одна сотая  

· Решая задачи на проценты, старайся сразу избавляться от знака %, переводя проценты в десятичную дробь – число процентов нужно разделить на  .

· Пользуйся упрощенными формулами, когда нужно увеличить или уменьшить число на сколько-то процентов: нужно домножить число на  , если ты увеличиваешь его на  , и на  , если уменьшаешь.

Проценты – это легко! Удачи!