Коротко о главном Начальный уровень

Рациональные неравенства. Коротко о главном.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Пройти пробный ЕГЭ 2018Пройти пробный ОГЭ 2018

Рациональное неравенство - неравенство, левая и правая части которого являются дробно-рациональными функциями, то есть функциями, представимыми в виде отношения многочленов   и  .

Стандартный вид рационального неравенства:  .

Строгие рациональные неравенства:

  •  , тогда и только тогда, когда  ;
  •  , тогда и только тогда, когда  .

Нестрогие рациональные неравенства:

  •  
  •  

Алгоритм решения рациональных неравенств:

  1. Переносим все в одну сторону и приводим к общему знаменателю, чтобы получить рациональное неравенство в стандартном виде:  ;
  2. Раскладываем числитель ( ) и знаменатель ( ) на множители. Для этого решаем уравнения   и  ;
  3. Находим ОДЗ ( );
  4. Отмечаем на числовой оси нули числителя и нули знаменателя;
  5. Определяем знаки для каждого интервала. Для этого берем произвольный   из одного из интервалов и определяем знак в интервале к которому относится корень, чередуем знаки, обращая внимание на корни, повторяющиеся в неравенстве несколько раз, от четности или нечетности количества раз их повторения зависит, меняется знак при прохождении через них или нет;
  6. Выбираем интервалы, на которых значения функции имеют знак, соответствующий знаку неравенства;
  7. Записываем ответ, обращая внимания на знак неравенства и на ОДЗ. Если неравенство строгое - все точки выколотые; если неравенство нестрогое - нули знаменателя - выколотые точки (по ОДЗ), а нули числителя - не выколотые точки.