Биссектриса. Начальный уровень.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Пройти пробный ЕГЭ 2017 Пройти пробный ОГЭ 2017

Биссектриса треугольника и ее свойства

Знаешь ли ты, что такое середина отрезка? Конечно же знаешь. А центр круга? Тоже. А что такое середина угла? Ты можешь сказать, что такого не бывает. Но почему же, отрезок можно разделить пополам, а угол нельзя? Вполне можно – только не точкой, а…. линией.

Помнишь шутку: биссектриса это крыса, которая бегает по углам и делит угол пополам. Так вот, настоящее определение биссектрисы очень похоже на эту шутку:

Биссектриса угла Биссектриса – это линия, делящая угол пополам.

Биссектриса треугольника - это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Когда-то древние астрономы и математики открыли очень много интересных свойств биссектрисы. Эти знания сильно упростили жизнь людей. Стало легче строить, считать расстояния, даже корректировать стрельбу из пушек… Нам же знание этих свойств поможет решить некоторые задания ГИА и ЕГЭ!

Первое знание, которое поможет в этом – биссектриса равнобедренного треугольника.

биссектриса треугольника Биссектриса равнобедренного треугольника, проведенная к основанию, является и медианой, и высотой.

Кстати, а помнишь ли ты все эти термины? Помнишь чем они отличаются друг от друга? Нет? Не страшно. Сейчас разберемся.

Итак, основание равнобедренного треугольника – это та сторона, которая не равна никакой другой. Посмотри на рисунок, как ты думаешь, какая это сторона? Правильно - это сторона  .

Медиана – это линия, проведенная из вершины треугольника и делящая противоположную сторону (это снова  ) пополам.

Заметь, мы не говорим: «Медиана равнобедренного треугольника». А знаешь почему? Потому что медиана, проведенная из вершины треугольника, делит противоположную сторону пополам в ЛЮБОМ треугольнике.

Ну, а высота – это линия, проведенная из вершины и перпендикулярная основанию. Ты заметил? Мы опять говорим о любом треугольнике, а не только о равнобедренном. Высота в ЛЮБОМ треугольнике всегда перпендикулярна основанию.

Итак, разобрались? Ну почти. Чтобы еще лучше понять и навсегда запомнить что такое биссектриса, медиана и высота, их нужно сравнить друг с другом и понять в чем они похожи и чем они отличаются друг от друга. При этом, чтобы лучше запомнить, лучше описать все «человеческим языком». Потом ты легко будешь оперировать языком математики, но сначала ты этот язык не понимаешь и тебе нужно осмыслить все на своем языке.

Итак, в чем они похожи? Биссектриса, медиана и высота – все они «выходят» из вершины треугольника и упираются в противоположную сторону и «что-то делают» либо с углом из которого выходят, либо с противоположной стороной. По-моему просто, нет?

А чем они отличаются?

  • Биссектриса делит угол, из которого выходит, пополам.
  • Медиана делит противоположную сторону пополам.
  • Высота всегда перпендикулярна противоположной стороне.

Теперь все. Понять – легко. А раз понял, можешь запомнить.

Теперь следующий вопрос. Почему же в случае с равнобедренным треугольником биссектриса оказывается одновременно и медианой и высотой?

Можно просто посмотреть на рисунок и убедиться, что медиана   разбивает   на два абсолютно равных треугольника. Вот и все! Но математики не любят верить своим глазам. Им нужно все доказывать. Страшное слово? Ничего подобного - все просто! Смотри: у   и   равны стороны   и  , сторона   у них вообще общая и  . (  – биссектриса!) И вот, получилось, что два треугольника имеют по две равные стороны и угол между ними. Вспоминаем первый признак равенства треугольников (не помнишь, загляни в тему «Треугольник») и заключаем, что  , а значит   =   и  .

  =   – это уже хорошо – значит,   оказалась медианой.

А вот что такое  ?

Посмотрим на картинку -  . А у нас получилось, что  . Значит,   и   тоже! Наконец, ура!   и  .

Показалось ли тебе это доказательство тяжеловатым? Посмотри на картинку – два одинаковых треугольника говорят сами за себя.

В любом случае твердо запомни:

Биссектриса, проведенная к основанию равнобедренного треугольника, делит это основание пополам и перпендикулярна ему.

Готов дальше?

Теперь сложнее: мы посчитаем угол между биссектрисами в любом треугольнике! Не бойся, все не так уж хитро. Смотри на рисунок:

Угол между биссектрисами B   проведем две биссектрисы   и   . Они пересеклись – а куда деваться-то? Какой же угол получился у точки  ?

Давай его посчитаем. Ты помнишь, что сумма углов треугольника равна  ?

Применим этот потрясающий факт.

С одной стороны, из  :

 , то есть  .

Теперь посмотрим на   :

 

Но биссектрисы, биссектрисы же!

 

Значит  

 , то есть

 

 

Вспомним про   :  

Значит,  

Теперь через буквы

 

Не удивительно ли? Получилось, что угол между биссектрисами двух углов зависит только от третьего угла!

Ну вот, две биссектрисы мы посмотрели. А что, если их три??!! Пересекутся ли они все в одной точке?

три биссектрисы пересекаются

Или будет так?

3 биссектрисы не пересекаются

Как ты думаешь? Вот математики думали-думали и доказали:

Три биссектрисы треугольника (любого!) пересекаются в одной точке – и эта точка – центр вписанной окружности.

Три биссектрисы треугольника и окружность

Правда, здорово?

Хочешь знать, почему же так получается?

Переходи на следующий уровень – ты готов к покорению новых вершин знаний о биссектрисе!

Комментарии

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги сделать так, чтобы его не закрыли... 

... а мы откроем для тебя ВСЕ скрытые примеры учебника.

Всего 199 руб...

Но твоя помощь бесценна! :)  

Спасибо!

Я хочу помочь YouClever!

Закрыть