Коротко о главном Начальный уровень

Параллелепипед; куб. Коротко о главном.

1. Определения:

Параллелепипед — это четырехугольная призма (многогранник с   гранями), все грани которой — параллелограммы.
Прямой параллелепипед - это параллелепипед, у которого   боковые грани - прямоугольники.
Прямоугольный параллелепипед - параллелепипед, у которого все грани - прямоугольники
Куб – параллелепипед, у которого все грани квадраты.

Высота параллелепипеда – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.

2. Свойства:

  • Противолежащие грани параллелепипеда параллельны и равны.
  • Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  • Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через точку пересечения диагоналей (центр параллелепипеда), делится ею пополам.
  • Все диагонали прямоугольного параллелепипеда равны между собой и равны сумме квадратов его измерений.
     .

Что такое параллелепипед

Что за слово такое мудреное – «параллелепипед»? Что за многогранник скрывается за этим словом? Что-то должно быть связано с параллельностью, не правда ли?

Так и есть:

параллелепипед

Параллелепипед – многоугольник, образованный пересечением трех пар параллельных плоскостей.

Если слишком сложно, просто посмотри на картинку.

Какую фигуру из планиметрии (геометрии с «плоскими» фигурами) напоминает параллелепипед?

Немного похоже на параллелограмм, правда? Только «потолще» и слово подлиннее.

параллелограмм

Основные понятия

Смотри, запоминай и не путай!

Грани

Ребра

Диагонали параллелепипеда

Диагонали граней параллелепипеда

Высота и основание параллелепипеда

Высота и основание параллелепипеда 2

Высота – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.

Та грань, на которую опущена высота, называется основанием.

Свойства параллелепипеда

  • Все грани параллелепипеда – параллелограммы.
  • Противоположные грани параллелепипеда параллельны и равны.

Противоположные грани параллелепипеда

Внимание: передняя и задняя грани параллелепипеда равны, верхняя и нижняя – тоже равны, но не равны (не обязаны быть равны) передняя и верхняя грани – потому что они не противоположные, а смежные.

  • Боковые ребра параллелепипеда равны:
    Противоположные грани параллелепипеда

Боковые ребра параллелепипеда

Боковые ребра параллелепипеда 2

  • Диагонали параллелепипеда пересекаются и точкой пересечения делятся пополам.

Диагонали параллелепипеда пересекаются

Точка пересечения диагоналей называется центром параллелепипеда.

Прямой параллелепипед

Прямым называется параллелепипед, у которого боковые ребра перпендикулярны основанию.

Вот так:

Прямой параллелепипед

У прямого параллелепипеда в основании – параллелограмм, а боковые грани - прямоугольники.

Прямоугольный параллелепипед

Прямоугольным называется параллелепипед, у которого в основании прямоугольник, а боковые ребра перпендикулярны основанию.

Это такая обувная коробка:

Прямоугольный параллелепипед

У прямоугольного параллелепипеда все гранипрямоугольники.

Давай-ка теперь выведем одну интересную формулу для диагонали прямоугольного параллелепипеда.

Диагональ прямоугольного параллелепипеда

Диагональ прямоугольного параллелепипеда равна сумме квадратов его измерений.
 .

Видишь, как красиво? На теорему Пифагора похоже, правда? И формула эта как раз и получается из теоремы Пифагора.

Смотри:

Параллелепипед. Диагональ. Формула

  - прямоугольный, поэтому

 

  - тоже прямоугольный!

Поэтому

 ,

Подставим:

 

Вывели формулу.

Куб

Куб – параллелепипед, у которого все грани квадраты.

Параллелепипед, куб

Все ребра куба равны.

Кстати, заметь, что куб – частный вид прямоугольного параллелепипеда.

Поэтому для диагонали куба действует формула, которую мы получили для прямоугольного параллелепипеда.

 ,

То есть

 

Давай убедимся в пользе этой формулы.

Представь, что у тебя задача: «Диагональ куба равна  . Найти полную поверхность».

Пользуясь нашей формулой:  , мы узнали, что  , то есть  .

Значит полная поверхность – шесть площадей квадратов со стороной   -равна:

 .

Видишь как быстро? И ты применяй!

Комментарии

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем для тебя ВСЕ скрытые примеры учебника до конца учебного года.

Всего 299 руб...

Но твоя помощь бесценна! :)  

Спасибо!

Я хочу помочь YouClever!

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть