Коротко о главном Средний уровень

Тела и поверхности вращения. Коротко о главном.

Тело вращения – это тело в пространстве, которое возникает при вращении какой-нибудь плоской фигуры вокруг какой-нибудь оси.

Например:

Было Вращаем Стало

Поверхность вращения – это граница тела вращения.

В подробной теории, мы рассмотрим несколько тел вращения. Те, которые встречаются в школьных задачах. Это шар, цилиндр и конус.

Что такое тела и поверхности вращения?

Тело вращения – это тело в пространстве, которое возникает при вращении какой-нибудь плоской фигуры вокруг какой-нибудь оси.

Вот самый простой пример: цилиндр.

Берем прямоугольник и начинаем вращать его вокруг одной из сторон.

Смотри

Было Вращаем Стало

Вращение цилиндра

А теперь гораздо хитрее. Бывает так, что ось вращения находится далеко от фигуры, которая вращается.

Например, так

Ось вращения

Вращаем

Вращение

Что получится? Бублик. А по научному ТОР.

фигура ТОР

Ну и так вот можно любую фигуру вертеть вокруг любой оси, и будут получаться разные более или менее сложные тела вращения.

Ну, а поверхность вращения – это просто граница тела вращения. Ведь поверхность это всегда граница тела.

Здесь мы рассмотрим подробно несколько тел вращения. Те, которые встречаются в школьных задачах. Это шар, цилиндр и конус.

Шар

Шар – тело вращения, полученное вращением полуокружности вокруг диаметра.

Было Вращаем Стало

Шар

Вообще-то есть и другое определение шара – через ГМТ (геометрическое место точек)

Шар – геометрическое место точек, удаленных от одной фиксированной точки на расстояние, не более заданного.

Скажу тебе по секрету, что хоть второе определение и пугающее на вид, оно удобнее в обращении. Задумайся, ведь если тебя попросят сказать, что такое шар, ты скажешь что-то вроде

«ну …там есть центр и радиус…, подразумевая, что все точки внутри шара находятся я на расстоянии не большем, чем радиус.

Ну, в общем, шар он и есть шар.

Названия, которые ты должен знать:

Шар. Центр и радиусШар. Диаметр и диаметральное сечение

Незнакомое тебе, наверное, только одно.

Диаметральное сечение шара – сечение, проходящее через центр. Это сечение иногда еще называют большим кругом.

А вообще:

  • Любое сечение шара – круг.
  • Граница шара называется сфера. (Так же, как граница круга – окружность.)

Площадь поверхности сферы

Площадь поверхности сферы    - радиус

Откуда взялось? Умные математики придумали – это не так уж просто – придется просто запомнить.

Объем шара

Объем шара    - радиус

Это еще одна хитрая формула, которую придется запомнить, не понимая, откуда она взялась.

Если ты знаком с производной, то можешь заметить это

 

И это не случайно! Но почему это так вышло, мы тоже здесь обсуждать не будем – читай теорию для сильного уровня.

Цилиндр

Цилиндр – тело, образованное вращением прямоугольника вокруг одной из сторон.

Вообще – то полное имя этого тела «прямой круговой цилиндр», но составители задач и мы вместе с ними по дружбе называем его просто цилиндром. Названия, относящиеся к цилиндру, такие:

Цилиндр

Основания у цилиндра – это круги

Еще у цилиндра есть так называемая развертка.

Развертка цилиндра Представь, что у нас от цилиндра осталась только боковая поверхность, и мы ее разрезали вдоль образующей и развернули.

Что получится? Представь себе, прямоугольник.

Прямоугольник

Развертка цилиндра – прямоугольник.

Площадь поверхности цилиндра

Площадь боковой поверхности

Площадь боковой поверхности цилиндра    - радиус  - высота, она же образующая.

Откуда взялась эта формула? Это как раз легко! Именно потому, что цилиндр можно развернуть, и получится прямоугольник  .

Площадь прямоугольника Площадь этого прямоугольника и есть площадь боковой поверхности цилиндра. Площадь прямоугольника, как мы хорошо помним равна произведению сторон, поэтому  

Площадь полной поверхности цилиндра

Прибавляем теперь площадь двух кругов – оснований и получаем

Площадь полной поверхности цилиндра  

Можно вынести (хотя и не обязательно)  :

 

Но эту формулу неудобно запоминать!

Гораздо проще запомнить, что полная поверхность – сумма боковой поверхности и еще двух кругов – оснований, а боковая поверхность – прямоугольник. И тогда   можно вообще не запоминать, ты всегда сам напишешь, что

 

Объем цилиндра

Объем цилиндра    - радиус основания  - высота

Это точно как у призмы и параллелепипеда

 , только у призмы и параллелепипеда   - это площадь многоугольника, а у цилиндра   - это площадь круга.

Конус

Конус – тело вращения, образованное вращением прямоугольного треугольника вокруг одного из катетов.

Было Вращаем Стало

Конус

И опять же, полное название этого тела: «прямой круговой конус», но во всех задачах у нас говорится просто «конус».

Названия, относящиеся к конусу:

Названия, относящиеся к конусу

Что тут нужно твердо помнить?

  • Основание корпуса – круг
  • Все образующие конуса – равны.

Ясно ли это? Вроде должно быть ясно, ведь образующая – это гипотенуза (одна и та же!) Треугольника, который вращаем, а радиус основания – катет.

У конуса тоже есть развертка.

развертка конуса

Снова представим, что основания нет, разрежем боковую поверхность вдоль образующей и развернём кулек. Что получится?

Представь себе сектор круга. Пусть длина образующей равна  .

Развертка конуса 2 Развертка конуса – сектор круга радиуса  

Площадь поверхности конуса:

Как найти площадь боковой поверхности корпуса? Вспомним о развертке, Ведь для цилиндра все было просто именно с помощью развертки.

Боковая поверхность По формуле площади сектора  Где   - угол при вершине в радианах.

И это уже формула. В некоторых задачах бывает дан именно угол при вершине в развертке конуса. Но если все же даны только образующая и радиус основания? Как быть?

Боковая поверхность 2

Нужно осознать, что же такое дуга в развертке? Это бывшая окружность основания! Поэтому длина этой дуги равна  .

С другой стороны, длина этой же дуги равна  , так как это дуга окружности радиуса  . Поэтому

 

Подставляем

 

Итак,

 , где

  - радиус окружности основания,

  - длина образующей

Ну, и осталось площадь полной поверхности конуса. Прибавим к боковой поверхности площадь круга основания, и получаем

Площадь полной поверхности конуса  Можно вынести  : 

Но, как и для цилиндра, не надо запоминать вторую формулу, гораздо проще всегда пользоваться первой.

Объем конуса

Объем конуса    - радиус основания  - высота

Это так же, как у пирамиды

 , только

  - это не площадь многоугольника, а площадь круга.

А вот откуда взялась  ?, по-прежнему остается загадкой, потому что эта   получена в результате довольно хитрых рассуждений умных математиков. А тебе нужно очень твердо запомнить, что в формулах объема «треугольных» фигур: конуса и пирамиды эта   и есть, а в формулах параллелепипеда, призмы и цилиндра ее нет!

Комментарии

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем для тебя ВСЕ скрытые примеры учебника до конца учебного года.

Всего 299 руб...

Но твоя помощь бесценна! :)  

Спасибо!

Я хочу помочь YouClever!

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть