Двугранный угол. Полный иллюстрированный гид (2019)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.

Вот так:

Двугранный угол рис. 1

При этом прямая   – это ребро двугранного угла, а полуплоскости   и   - стороны или грани двугранного угла.

Двугранный угол получает обозначение по своему ребру: «двугранный угол  ».

С понятием двугранного угла тесно связано понятия: угол между плоскостями.

Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей.

Двугранный угол рис. 2

Итак, внимание! Различие между двугранным углом и углом между плоскостями в том, что:

Двугранный угол может быть и острым, и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!

 

Линейный угол двугранного угла.

Как измерить двугранный угол?

Нужно поступить так: из произвольной точки на ребре двугранного угла провести в каждой плоскости по перпендикуляру к этому ребру.

Смотри:

Двугранный угол рис. 3

В плоскости   провели перпендикуляр   к ребру  . Что получилось? Обычный, плоский угол  . Вот этот угол и называется: линейный угол двугранного угла  .

Зачем этот линейный угол? Запомни, это очень ВАЖНО:

Двугранный угол измеряется величиной своего линейного угла.

То есть математически договорились, что если угол φ будет равен, к примеру  , то это будет автоматически означать, что угол   равен  .

Вот и ключ к поиску величины двугранного угла и угла между плоскостями:

Чтобы найти величину двугранного угла или угла между плоскостями, нужно построить линейный угол и найти величину этого линейного угла.

Ещё раз немного о названиях.

Прямой двугранный угол – двугранный угол, который равен  , то есть тот, у которого линейный угол равен  .

 

Как найти угол между плоскостями.

Найти угол между плоскостями (можно двумя способами: геометрическим и алгебраическим).

При геометрическом способе нужно сначала построить угол двугранного угла, а потом искать этот линейный угол с помощью знаний из планиметрии.

Двугранный угол рис. 4

Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.

Вот такая:

 

Здесь   - коэффициенты уравнений плоскостей   и   соответственно.

  

 :  .

Какой же способ лучше? Зависит от задачи.

Если нужно найти, скажем, двугранный угол при основании правильной , то проще использовать геометрический способ, а если линейный угол двугранного угла никак не хочет проходить ни через какие удобные точки, то можно использовать метод координат как палочку выручалочку.

Но тогда нужно очень твёрдо знать формулы и не делать арифметических ошибок при многочисленных подсчётах – ведь придётся искать  , а потом ещё и  .

Давай разберём несложную задачу для примера. Мы применим оба метода. А в твоих задачах выбор за тобой!

Задача 1.

В правильной треугольной пирамиде боковое ребро в три раза больше ребра основания. Найти двугранный угол при основании пирамиды.

Решаем геометрически:

Двугранный угол рис. 5

 

Теперь решаем с помощью метода координат:

Двугранный угол рис. 6

 

ДВУГРАННЫЙ УГОЛ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Двугранный угол рис. 1 Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.
Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей.Двугранный угол может быть и острым ,и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!
  • Двугранный угол измеряется величиной своего линейного угла.
  • Чтобы найти величину двугранного угла или угла между плоскостями, нужно построить линейный угол и найти величину этого линейного угла.
Прямой двугранный угол – двугранный угол, который равен  , то есть тот, у которого линейный угол равен  .

 

Два способа найти угол между плоскостями:

При геометрическом способе нужно сначала построить угол двугранного угла, а потом искать этот линейный угол с помощью знаний из планиметрии.

Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.

 

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ :)

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.  

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.  

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой  доступ ко всем скрытым задачам в этой статье - Купить статью - 299 руб
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Удачи!

Комментарии

Мария
11 июля 2018

Обратите внимание на первый рисунок. Отрезок AB на нем не является ребром двугранного угла.

ответить

Александр (админ)
11 июля 2018

Спасибо, Мария! Исправили.

ответить

Надежда
16 марта 2019

И где же исправили?!! Первый рисунок в кратком изложении с ошибкой так и остался

ответить

Александр (админ)
19 марта 2019

Точно! В кратком изложении не доглядели. Теперь точно исправили! )

ответить

Елена
24 января 2019

Здравствуйте! Очень нравится ваш учебник. Исправьте в задаче в формуле cos∠SKB и в комментарии к ней (это теорема косинусов), и далее Итак, cos∠SKB. Отличная работа! Спасибо!

ответить

Александр (админ)
24 января 2019

Спасибо, Елена! Обязательно исправим.

ответить

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем тебе доступ ко всем скрытым задачам в этой статье - 299 руб,

... или ко всем скрытым задачам во всех 99 статьях учебника - 899 руб.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

Хочу помочь YouClever - 299 руб
Хочу помочь YouClever - 899 руб.

Я уже зарегистрирован / оплатил

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть