Коротко о главном Средний уровень

Многоугольники. Средний уровень.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Пройти пробный ЕГЭ 2017 Пройти пробный ОГЭ 2017

Многоугольник – это замкнутая линия, которая образовывается, если взять   каких-либо точек   и соединить их последовательно отрезками.

Многоугольник (n-угольник)
  • Точки   - вершины многоугольника.
  • Отрезки   – стороны многоугольника.

Многоугольник с   сторонами называют  -угольником.

Произвольные многоугольники

Давай-ка нарисуем, какие бывают многоугольники.

Многоугольники рис. 1

А теперь вопрос: какой из этих многоугольников выпадает из ряда?

Посмотри внимательно на второй многоугольник - он по-существу отличается от всех остальных. Чем же? Он не выпуклый. Это конечно математическое название, но с человеческой интуицией не расходится.

Ну вот, а мы будем рассматривать только выпуклые многоугольники, то есть такие, как 1),3),4) и т.п.

Итак, основной факт:

Многоугольники рис. 2 В любом многоугольнике сумма внутренних углов равна  , где буква « » означает число углов многоугольника.

Давай сразу к примерам:

Четырехугольник

Четырехугольник  

Пятиугольник

Пятиугольник  

Шестиугольник

Шестиугольник  

Ах да, про треугольник забыли.

Треугольник

Треугольник  

А теперь давай все-таки разберемся, откуда же взялась формула  . Зачем? Понимаешь, приемчик, который мы сейчас применим, часто оказывается полезным при решении разных задач. Несмотря на то, что теорема о сумме углов многоугольника верна для всякого многоугольника, доказательство красивое и простое только для выпуклых многоугольников. Итак, давай разделим многоугольник на треугольники.

Вот так: из одной точки проведем все диагонали, что можно. Сколько их будет? Считаем:

диагонали в многоугольнике Всего вершин:  
Из вершины   можем провести диагонали во все вершины, кроме:
  • Самой вершины  
  • Вершины  
  • Вершины  

Значит всего диагоналей  . А на сколько треугольников распался наш многоугольник?

Представь себе: на  . Порисуй, посчитай – удостоверься, что треугольников оказывается ровно на один больше.

Итак, у нас ровно   треугольника. И сумма углов многоугольника просто равна сумме углов треугольников, на которые мы разбили многоугольник. Чему равна сумма углов треугольника? Помнишь? Конечно  .

Ну вот,   треугольника, в каждом по  , значит:

Сумма углов многоугольника равна   

Что же из этого может оказаться полезным? А вот что:

  1. Разделение на треугольники.
  2. Осознание того, что если провести какую-нибудь диагональ, то получится два новых многоугольника, сумма углов которых равна сумме углов большого многоугольника.

Вот смотри, был  -угольник:

10-угольник Его сумма углов  . Провели диагональ, скажем  :

Получился пятиугольник   и семиугольник  . Сумма углов   равна  , а сумма углов   равна  . А вместе :   - все сошлось! Ну и на этом о произвольных многоугольниках – хватит.

Правильные многоугольники

Многоугольник называется правильным, если все его углы и все его стороны равны.

Так, например: квадрат – правильный четырехугольник, а вот прямоугольник – нет, хоть и все углы у него равные, и ромб – нет, хоть и все стороны равны. Нужно непременно, чтобы все углы и все стороны были равны.

Первый вопрос:

А можно ли найти величину одного (а значит и всех) угла правильного многоугольника?

И ответ: можно!

Давай посмотрим на примере.

Пусть есть, скажем, правильный восьмиугольник:

Правильный многоугольник Сумма всех его углов равна  . А сколько всего углов? Восемь конечно, и они все одинаковые.

Значит любой угол, скажем   можно найти:

 .

Что мы еще должны знать?

Любой правильный многоугольник можно вписать в окружность и вокруг любого правильного многоугольника можно описать окружность.

При этом центры этих окружностей совпадают.

Смотри как это выглядит!

Правильный многоугольник. Вписанная и описанная окружность

И более того, всегда можно посчитать соотношение между радиусом вписанной и описанной окружностей.

Давай опять на примере восьмиугольника. Посмотри на  . В нем  

Значит,   - и это не только в восьмиугольнике!

Чему же равен в нашем случае  ?

Ровно половине  , представь себе!

Значит  . Смешно? Но так и есть! Поэтому для восьмиугольника  .

Может возникнуть еще один вопрос: а можно ли посчитать углы «около» точки  ? И тот же ответ: конечно можно! Опять рассмотрим наш восьмиугольник. Вот мы хотим найти   (то есть  ).

Мы знаем, что в   сумма углов равна  . Значит:

 

Потому  

И так можно все находить не только для восьмиугольника, но и для любого правильного многоугольника.

Комментарии

Сергей
19 февраля 2018

Просто огромное спасибо. Хоть что-то начал понимать.

ответить

Александр (админ)
19 февраля 2018

Просто огромное пожалуйста. :) Очень приятно слышать от вас такие слова.

ответить

СУХРОБ
01 июня 2018

Примеры с решением пожалуйста скиньте

ответить

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги сделать так, чтобы его не закрыли... 

... а мы откроем для тебя ВСЕ скрытые примеры учебника.

Всего 199 руб...

Но твоя помощь бесценна! :)  

Спасибо!

Я хочу помочь YouClever!

Закрыть