Описанный четырехугольник. Визуальный гид (2020)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Что такое описанный четырехугольник? Посмотри – сперва нарисуем:

описанный четырехугольник. определение

А теперь напишем:

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

А что, разве не всегда существует такая окружность? Ведь вон треугольник-то всегда является описанным – потому что во всякий треугольник можно вписать окружность. Чем же четырехугольник-то хуже? И вот оказывается, что чем-то, да хуже.

Представь себе, например длинный прямоугольник.

не описанный четырехугольник

Как вот в него, спрашивается, можно вписать окружность? Конечно, никак. И это лишь один из примеров четырехугольника, в которой НЕЛЬЗЯ вписать окружность.

А в какие же можно? Вот, оказывается есть такая теорема (утверждение то есть).

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

Вот как это записывается в буквах:

описанный четырехугольник 2  
или (то же самое)
 

Для лучшего понимания давай в буквальном смысле разберём на кусочки описанный четырехугольник. Смотри: пусть в четырехугольнике   «сидит» окружность.

Но тогда у нас есть огромное количество касательных! Ты ещё помнишь, что отрезки касательных, проведённых из одной точки, равны? Ну, вот, значит

  (обозначим  )

  (обозначим  )

  (обозначим  )

  (обозначим  )

А теперь получилось, что

 

и

 

То есть  ! Здорово, правда?

А теперь получим простое, но красивое следствие из этой теоремы.

Следствие. Если в параллелограмм можно вписать окружность, то это ромб.

Почему? Давай разберёмся. Пусть есть параллелограмм  .

описанный четырехугольник 3

Раз параллелограмм, то   (вспоминаем свойства параллелограмма). Обозначим   буквой  , а   буквой  .

А теперь применим теорему.   описанный  , то есть   – вот и получился ромб.

описанный четырехугольник 4 Видишь, как сработала теорема?

Вот и ты, если видишь в задачке надпись «в четырёхугольник вписана окружность» или, конкретнее, скажем, «в трапецию вписана окружность», то сразу вспоминай, что   – и задача решится! … Ну… или не сразу решится, но этот факт непременно тебе поможет.

ОПИСАННЫЙ ЧЕТЫРЕХУГОЛЬНИК. СРЕДНИЙ УРОВЕНЬ

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

Давай прежде всего осознаем, что, в отличие от треугольника, далеко не во всякий четырехугольник можно поместить окружность так, чтобы она касалась всех его сторон.

Ну, вот пример:

А раз так, то математики, конечно же, не могли успокоиться, пока не придумали теорему, которая сообщит нам, что же такое нужно требовать от четырехугольника, чтобы в него можно было поместить окружность, касающуюся всех сторон.

И вот эта теорема:

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.
В буквах:
 
или (в других буквах)
 

Заметь, что (как всегда) слова «тогда и только тогда» означают сразу два утверждения: «туда» и «обратно». Итак, если подробнее, то теорема утверждает

a) Если в четырехугольник можно вписать окружность, то  

b) Если в четырехугольнике есть  , то в него можно вписать окружность.

(Вспоминаем Алису с безумным шляпником и их «ем то, что вижу» и «вижу то, что ем»)

А теперь – доказательство!

Пункт a) вообще ОЧЕНЬ лёгкий. Смотри:

Пусть в   вписана окружность. Тогда получается из точек   и   проведено по две касательных, которые равны! (Вспоминаем о равенстве отрезков касательных проведённых из одной точки)

Итак, у нас

  (обозначим  )

  (обозначим  )

  (обозначим  )

  (обозначим  )

И теперь получается, что

 

и

 

 

Обе этих суммы состоят из одинаковых кусочков, просто взятых в разном порядке.

Готово: пункт a) доказали.

А теперь, наоборот, пункт б).

Пусть в   выполняется  

Чтобы что-то понять, впишем окружность сперва в такую «кастрюлю» -   без стороны  .

Обрати внимание, что это всегда можно сделать – центром   такой окружности будет пересечение биссектрис углов   и  .

Ну вот, в «кастрюле» сидит окружность. При этом сторона  , если она НЕ касается этой окружности, может либо пересекать её, либо вовсе не иметь с ней общих точек. Разберём эти случаи и убедимся, что оба они ведут к противоречию.

Пусть   пересекает окружность. Давай тогда проведём  , которая будет касаться окружности.

По пункту а) для четырехугольника   должно быть

 ,

а по условию для четырехугольника   

 .

Значит (вычитаем нижнее равенство из верхнего)

 

То есть  

Но так СОВСЕМ не может быть – нарушается неравенство треугольника для  :

должно быть  , а у нас  .

Вот и противоречие. Поэтому точно выяснили, что   НЕ МОЖЕТ пересекать окружность.

Пусть теперь   «не дотягивается» до окружности.

Снова проведём  , которая этой окружности каснется. И опять   и  . Теперь вычитаем из нижнего верхнее.
 

То есть   – опять нарушаем неравенство треугольника для   - значит, опять имеем противоречие и заключаем, что   НЕ МОЖЕТ вовсе не иметь общих точек с окружностью.

И что же этой бедной   остаётся?

Только касаться окружности.

Вот и доказали пункт б), а с ним и всю теорему.

А теперь посмотрим, как работает эта теорема. Докажем такое следствие:

Следствие. Если в параллелограмм можно вписать окружность, то это – ромб.

Доказываем: пусть есть параллелограмм  .

По свойству параллелограмма   (обозначим  ) и   (обозначим  ).

Раз в   можно вписать окружность, то  , то есть   .

Вот и получился ромб. Понравилось?

Вот и прими на вооружение: если в задаче сказано, что окружность вписана в какой-нибудь четырехугольник, то постарайся применить то, что тогда   или даже прямо структуру из кусочков касательных – обязательно поможет!

ОПИСАННЫЙ ЧЕТЫРЕХУГОЛЬНИК. КОРОТКО О ГЛАВНОМ

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

  • В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. В буквах:  
  • Если в параллелограмм можно вписать окружность, то это – ромб.

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ :)

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.  

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.  

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой  доступ ко всем скрытым задачам в этой статье - Купить статью - 299 руб
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Удачи!

Комментарии

Илья
05 января 2019

У вас правая часть не видна и некоторый контэнт тежело понять

ответить

Александр (админ)
05 января 2019

Илья, добрый вечер. Скажите, пожалуйста, чем вы пользуетесь для просмотра сайта? Модель телефона/планшета/компьютера и диагональ экрана.

ответить

Илья
10 января 2019

я пользууюсь ноутбуком диагональ экрана-45 см ноутбук от HP

ответить

Александр (админ)
11 января 2019

А правая часть чего не видна? Текста? Вы можете сделать скриншот и прислать на адрес youclever@youclever.org? И еще, через какой браузер смотрите? Нам не удается повторить ошибку.

ответить

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Добрый день!

Закрытые части учебника - только для учеников YouClever.

Оставьте Email и я расскажу вам как им стать и пришлю в качестве бесплатного бонуса доступ к разделу учебника «Базовые темы» (стоимость раздела - 497 руб).

Значимость этого раздела для ЕГЭ - 14 из 100! Он состоит из 15 тем:

  1. НОК и НОД, признаки делимости и методы группировки;
  2. Степень и ее свойства;
  3. 7 волшебных формул сокращенного умножения;
  4. 5 способов разложения многочлена на множители;
  5. Дроби. Рациональные числа. Операции с дробями;
  6. Все о десятичных дробях;
  7. Задачи на проценты. Как найти процент от числа;
  8. Преобразование выражений. Подробная теория;
  9. Сравнение чисел;
  10. Квадратный корень;
  11. Корень и его свойства. Подробная теория с примерами;
  12. Свойства логарифмов и примеры их решений;
  13. Замена переменных;
  14. Модуль числа;
  15. ОДЗ - область допустимых значений.

Оставить Email

Имя

E-mail

Кто Вы?

Класс

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем тебе доступ ко всем скрытым задачам в этой статье - 299 руб,

... или ко всем скрытым задачам во всех 99 статьях учебника - 899 руб.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

Хочу помочь YouClever - 299 руб
Хочу помочь YouClever - 899 руб.

Я уже зарегистрирован / оплатил

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть