Параллелограмм, прямоугольник, ромб, квадрат (2020)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

1. Параллелограмм

Сложное слово «параллелограмм»? А скрывается за ним очень простая фигура.

Смотри:

Параллелограмм. Параллелограмм – это четырехугольник, противоположные стороны которого попарно параллельны

Ну, то есть, взяли две параллельные прямые:

Параллельные прямые

Пересекли ещё двумя:

параллельные прямые 2.

И вот внутри – параллелограмм!

Какие же есть свойства у параллелограмма?

Свойства параллелограмма.

То есть, чем можно пользоваться, если в задаче дан параллелограмм?

На этот вопрос отвечает следующая теорема:

В любом параллелограмме:

  1. Противоположные стороны равны
  2. Противоположные углы равны
  3. Диагонали делятся пополам точкой пересечения

Давай нарисуем все подробно.

Что означает первый пункт теоремы? А то, что если у тебя ЕСТЬ параллелограмм, то непременно

Противоположные стороны параллелограмма равны.   и
 .

Второй пункт означает, что если ЕСТЬ параллелограмм, то, опять же, непременно:

Противоположные углы параллелограмма равны.   и
 

Ну, и наконец, третий пункт означает, что если у тебя ЕСТЬ параллелограмм, то обязательно:

Диагонали в параллелограмме делятся пополам точкой пересечения.   и
 

Видишь, какое богатство выбора? Что же использовать в задаче? Попробуй ориентироваться на вопрос задачи, или просто пробуй все по очереди – какой-нибудь «ключик» да подойдёт.

А теперь зададимся другим вопросом: а как узнать параллелограмм «в лицо»? Что такое должно случиться с четырехугольником, чтобы мы имели право выдать ему «звание» параллелограмма?

На этот вопрос отвечает несколько признаков параллелограмма.

Признаки параллелограмма.

Внимание! Начинаем.

  • Признак 1. Если у четырехугольника две стороны равны и параллельны, то это – параллелограмм.
Признак параллелограмма 1.        - параллелограмм.

  - паралелограмм.

  • Признак 2. Если у четырехугольника противоположные стороны равны, то это – параллелограмм.
Признак параллелограмма 2.        – параллелограмм.
  • Признак 3. Если у четырехугольника противоположные углы равны, то это – параллелограмм.
Признак параллелограмма 3.       – параллелограмм.
  • Признак 4. Если у четырехугольника диагонали делятся точкой пересечения пополам, то это – параллелограмм.
Признак параллелограмма 4.        – параллелограмм.

Обрати внимание: если ты нашёл хотя бы один признак в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмма.

Для полной ясности посмотри на схему:

Признаки параллелограмма. Свойства параллелограмма.

2. Прямоугольник

Думаю, что для тебя вовсе не явится новостью то, что

Прямоугольник. Прямоугольник – четырехугольник, все углы которого прямые.

Первый вопрос: а является ли прямоугольник параллелограммом?

Конечно, является! Ведь у него   и   - помнишь, наш признак 3?

А отсюда, конечно же, следует, что у прямоугольника, как и у всякого параллелограмма   и  , а диагонали точкой пересечения делятся пополам.

Но есть у прямоугольника и одно отличительноесвойство.

Свойство прямоугольника

Диагонали прямоугольника. Диагонали прямоугольника равны:  .

Почему это свойство отличительное? Потому что ни у какого другого параллелограмма не бывает равных диагоналей. Сформулируем более чётко.

Свойство прямоугольника. Если у параллелограмма равны диагонали, то это - прямоугольник.

Обрати внимание: чтобы стать прямоугольником, четырехугольнику нужно сперва стать параллелограммом, а потом уже предъявлять равенство диагоналей.

3. Ромб

Ромб. Ромб – четырехугольник, все стороны которого равны между собой.

И снова вопрос: ромб – это параллелограмм или нет?

С полным правом – параллелограмм, потому что у него   и   (вспоминаем наш признак 2).

И снова, раз ромб – параллелограмм, то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Но есть и особенные свойства. Формулируем.

Свойства ромба

  • Свойство 1. Диагонали ромба перпендикулярны.
Свойство ромба 1.   (если ты забыл, напомню:  - значок перпендикулярности)
  • Свойство 2. Диагонали ромба являются биссектрисами его углов.

Посмотри на картинку:

Свойство ромба 2.

Как и в случае с прямоугольником, свойства эти – отличительные, то есть по каждому из этих свойств можно заключить, что перед нами не просто параллелограмм, а именно ромб.

Признаки ромба

  • Признак 1. Если в параллелограмме диагонали перпендикулярны, то это ромб.

Признак ромба 1.

  • Признак 2. Если в параллелограммехотя бы одна из диагоналей делит пополам оба угла, через которые она проходит, то этот параллелограмм – ромб.

Признак ромба 2.

И снова обрати внимание: должен быть не просто четырехугольник, у которого перпендикулярны диагонали, а именно параллелограмм. Убедись:

Ромбом может быть только параллелограмм. разве это ромб?

Нет, конечно, хотя его диагонали и перпендикулярны, а диагональ   – биссектриса углов   и  . Но … диагонали не делятся, точкой пересечения пополам, поэтому   – НЕ параллелограмм, а значит, и НЕ ромб.

4. Квадрат

Квадрат Квадрат – четырехугольник, у которого все стороны равны между собой, а все углы – прямые.

То есть квадрат – это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Квадрат, прямоугольник, ромб. У квадрата угол между диагональю и стороной равен  .

Понятно почему? Квадрат - ромб   – биссектриса угла A, который равен  . Значит   делит   (да и   тоже) на два угла по  .

Диагонали квадрата. Диагонали квадрата равны, перпендикулярны и делятся точкой пересечения пополам.

Ну, это совсем ясно: прямоугольник  диагонали равны; ромб  диагонали перпендикулярны, и вообще – параллелограмм  диагонали делятся точкой пересечения пополам.

Диагональ квадрата. Если сторона квадрата равна  , то его диагональ равна  .

Почему? Ну, просто применим теорему Пифагора к  .

 

Значит,  .

СРЕДНИЙ УРОВЕНЬ

Свойства четырехугольников. Параллелограмм

Параллелограмм – это четырехугольник, противоположные стороны которого попарно параллельны.

Параллелограмм.

Свойства параллелограмма

Внимание! Слова «свойства параллелограмма» означают, что если у тебя в задаче есть параллелограмм, то всем нижеследующим можно пользоваться.

Итак,

Теорема о свойствах параллелограмма.

В любом параллелограмме:

1) Противоположные стороны равны Параллелограмм. Противоположные стороны равны.
2) Противоположные углы равны Параллелограмм. Противоположные углы равны.
3) Диагонали делятся пополам точкой пересечения Параллелограмм. Диагонали делятся пополам точкой пересечения.

Давай-ка поймём, почему это всё верно, иными словами ДОКАЖЕМ теорему.

Итак, почему верно 1)?

Параллелограмм. Доказательство теоремы. Давай проведём диагональ  . Что получится?
Два треугольника:   и  .

Раз   – параллелограмм, то :

  •     как накрест лежащие
  •     как накрест лежащие.

Значит,   (по II признаку:   и   - общая.)

Ну вот, а раз  , то   и   – всё! – доказали.

Но кстати! Мы ещё доказали при этом и 2)!

Почему? Но ведь   (смотри на картинку), то есть  , а   именно потому, что  .

Осталось только 3).

Для этого всё-таки придётся провести вторую диагональ.

Параллелограмм. Доказательство теоремы 2. Мы уже выяснили, что  . Давай снова отметим равные накрест лежащие углы (посмотри и убедись, что все верно).

И теперь видим, что   - по II признаку (  угла и сторона «между» ними).

Параллелограмм. Доказательство теоремы 3. Значит,   (напротив углов   и  ) и   (напротив углов   и   соответственно).

Свойства доказали! Перейдём к признакам.

Признаки параллелограмма

Напомним, что признак параллелограмма отвечает на вопрос "как узнать?", что фигура является параллелограммом.

Признак 1. Если у четырехугольника две стороны равны и параллельны, то это параллелограмм.

В значках это так:

Параллелограмм. Признак №1 - 1.  ;      – параллелограмм.

Почему? Хорошо бы понять, почему   – этого хватит. Но смотри:

Параллелограмм. Признак №1 - 2.   по 1 признаку:  ,  - общая и   как накрест лежащие при параллельных   и   и секущей  .

А раз  ,

Параллелограмм. Признак №1 - 2 то   (лежат напротив   и   соответственно). Но это значит, что   (  и   - накрест лежащие и оказались равны).

Ну вот и разобрались, почему признак 1 верен.

Признак 2. Если у четырехугольника противоположные стороны равны, то это – параллелограмм.
Параллелограмм. Признак №2 - 1  ,       – параллелограмм.

Ну, это ещё легче! Снова проведём диагональ  .

Параллелограмм. Признак №2 - 2. Теперь   просто по трём сторонам.

А значит:

Параллелограмм. Признак №2 - 3.     и    , то есть   – параллелограмм.
Признак 3. Если у четырёхугольника противоположные углы равны, то это – параллелограмм.
Параллелограмм. Признак №3 - 1  ,       – параллелограмм.

И тоже несложно. Но …по-другому!

Параллелограмм. Признак №2 - 2   (ведь   – четырехугольник, а  ,   по условию).

Значит,  . Ух! Но   и   – внутренние односторонние при секущей  !

Поэтому тот факт, что   означает, что  .

А если посмотришь с другой стороны, то   и   – внутренние односторонние при секущей  ! И поэтому  .

Видишь, как здорово?!

Признак 4. Если у четырехугольника диагонали делятся точкой пересечения пополам, то это – параллелограмм.
Параллелограмм. Признак №3 - 1        – параллелограмм.

И опять просто:

Параллелограмм. Признак №3 - 2  ,   как вертикальные  ,  , и  .

Точно так же  ,    , и  .

Обрати внимание: если ты нашел хотя бы один признак параллелограмма в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмма.

Для полной ясности посмотри на схему:

Достаточные условия для свойств параллелограмма.

Свойства четырехугольников. Прямоугольник.

Прямоугольник. Прямоугольник – четырехугольник, все углы которого прямые.

Свойства прямоугольника:

  1. Прямоугольник – параллелограмм
  2. Диагонали прямоугольника равны

Пункт 1) совсем очевидный – ведь просто выполнен признак 3 (   )

А пункт 2) – очень важный. Итак, докажем, что

диагонали прямоугольника равны.
Диагонали прямоугольника - равны. Раз прямоугольник – это параллелограмм, то  .

А значит,   по двум катетам (  и   - общий).

Ну вот, раз треугольники   и   равны, то у них и гипотенузы   и   тоже равны.

Доказали, что  !

И представь себе, равенство диагоналей – отличительное свойство именно прямоугольника среди всех параллелограммов. То есть верно такое утверждение^

Если у параллелограмма равны диагонали, то это прямоугольник.

Давай поймём, почему?

Параллелограмм с равными диагоналями.   – параллелограмм  
  – по условию.
  – теперь уже по трём сторонам.

Значит,   (имеются в виду углы параллелограмма). Но ещё раз вспомним, что   – параллелограмм, и поэтому  .

Значит,  . Ну и, конечно, из этого следует, что каждый из них по  ! Ведь в сумме-то они должны давать  !

Вот и доказали, что если у параллелограмма вдруг (!) окажутся равные диагонали, то это точно прямоугольник.

Но! Обрати внимание! Речь идёт о параллелограммах! Не любой четырехугольник с равными диагоналями – прямоугольник, а только параллелограмм!

Свойства четырехугольников. Ромб

Ромб. Ромб – четырехугольник, все стороны которого равны между собой.

И снова вопрос: ромб – это параллелограмм или нет?

С полным правом – параллелограмм, потому что у него   и   (Вспоминаем наш признак 2).

И снова, раз ромб – параллелограмм, то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Но есть и особенные свойства. Формулируем.

Свойства ромба

Свойство 1. Диагонали ромба перпендикулярны.

Почему? Ну, раз ромб – это параллелограмм, то его диагонали делятся пополам.

Ромб. Свойство 1. Поэтому   по трём сторонам ( ,   - общая,  ).И значит,  , но они смежные!
  и  .
Свойство 2. Диагонали ромба являются биссектрисами его углов.

Почему? Да, потому же!

Ромб. Свойство 2. Из-за того, что диагонали делятся точкой пересечения пополам, а все стороны ромба равны, весь ромб оказался разделён диагоналями на четыре равных треугольника:  .

Поэтому

 

 

Иными словами, диагонали   и   оказались биссектрисами углов ромба.

Как в случае с прямоугольником, свойства эти – отличительные, каждые из них является ещё и признаком ромба.

Признаки ромба.

Признак 1. Если в параллелограмме диагонали перпендикулярны то это – ромб.
Ромб. Признак 1.  
    - ромб

Почему? Смотри:

Ромб. Признак 1. Обоснование.   - параллелограмм  .
Но ещё дано, что
      - по двум катетам.
И значит,   – и всё!
Признак 2. Если в параллелограмме хотя бы одна из диагоналей делит пополам оба угла, через которые она проходит, то этот параллелограмм – ромб.

А это почему? А посмотри,

Ромб. Признак 2.  , так как   – параллелограмм. Но ещё дано, что   – биссектриса углов   и  .

Значит,   и оба этих треугольника – равнобедренные.

Ромб. Признак 2. Обоснование. Значит,  , то есть   - ромб.

И снова обрати внимание! Не всякий четырёхугольник с перпендикулярными диагоналями – ромб.

Вот пример:

Не каждый четырехугольник - ромб. Это вовсе не ромб, хоть его диагонали и перпендикулярны.

Чтобы быть ромбом, четырёхугольник сперва должен «стать» параллелограммом, а потом уже демонстрировать признак 1 или признак 2.

Свойства четырехугольников. Квадрат

Квадрат. Квадрат – четырехугольник, у которого все стороны равны между собой, а все углы – прямые.

То есть квадрат – это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Квадрат. Угол между диагональю и стороной. У квадрата угол между диагональю и стороной равен  .

Понятно, почему? Квадрат - ромб     – биссектриса угла  , который равен  . Значит   делит   (да и   тоже) на два угла по  .

Диагонали квадрата. Диагонали квадрата – равны, перпендикулярны и делятся точкой пересечения пополам.

Ну, это совсем ясно: прямоугольник   диагонали равны; ромб   диагонали перпендикулярны, и вообще – параллелограмм   диагонали делятся точкой пересечения пополам.

Зависимость длины диагонали квадрата, от длины его стороны. Если сторона квадрата равна  , то его диагональ равна  .

Почему? Ну, просто применим теорему Пифагора к  .

 

Значит,  

 

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

  • Параллелограмм - четырехугольник, противоположные стороны которого попарно параллельны.

Свойства параллелограмма:

  1. Противоположные стороны равны:   .
  2. Противоположные углы равны:   .
  3. Углы при одной стороне составляют в сумме      .
  4. Диагонали делятся точкой пересечения пополам:  .
  • Прямоугольник – четырехугольник, все углы которого прямые:  .

Свойства прямоугольника:

  1. Диагонали прямоугольника равны:  .
  2. Прямоугольник – параллелограмм (для прямоугольника выполняются все свойства параллелограмма).
  • Ромб – четырехугольник, все стороны которого равны между собой:  .

Свойства ромба:

  1. Диагонали ромба перпендикулярны:  .
  2. Диагонали ромба являются биссектрисами его углов:     .
  3. Ромб – параллелограмм (для ромба выполняются все свойства параллелограмма).
  • Квадрат – четырехугольник, у которого все стороны равны между собой, а все углы – прямые:   .

Свойства квадрата:

Квадрат - ромб и прямоугольник одновременно, следовательно для квадрата выполняются все свойства прямоугольника и ромба. А так же:

  • Если сторона квадрата равна  , то его диагональ равна  .

 

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ :)

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.  

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.  

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой  доступ ко всем скрытым задачам в этой статье - Купить статью - 299 руб
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Удачи!

Комментарии

максим
26 марта 2019

молодцы

ответить

Александр (админ)
26 марта 2019

Спасибо, Максим!

ответить

Даниил
03 июня 2019

Спасибо очень помогли!

ответить

Александр (админ)]
03 июня 2019

Пожалуйста, Даниил! Напиши, если не трудно, в чем конкретно помогли. Чему ты у нас научился? Мне пригодится эта информация, чтобы сделать оба сайта лучше. И YouClever.org и 100gia.ru

ответить

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Добрый день!

Закрытые части учебника - только для учеников YouClever.

Оставьте Email и я расскажу вам как им стать и пришлю в качестве бесплатного бонуса доступ к разделу учебника «Базовые темы» (стоимость раздела - 497 руб).

Значимость этого раздела для ЕГЭ - 14 из 100! Он состоит из 15 тем:

  1. НОК и НОД, признаки делимости и методы группировки;
  2. Степень и ее свойства;
  3. 7 волшебных формул сокращенного умножения;
  4. 5 способов разложения многочлена на множители;
  5. Дроби. Рациональные числа. Операции с дробями;
  6. Все о десятичных дробях;
  7. Задачи на проценты. Как найти процент от числа;
  8. Преобразование выражений. Подробная теория;
  9. Сравнение чисел;
  10. Квадратный корень;
  11. Корень и его свойства. Подробная теория с примерами;
  12. Свойства логарифмов и примеры их решений;
  13. Замена переменных;
  14. Модуль числа;
  15. ОДЗ - область допустимых значений.

Оставить Email

Имя

E-mail

Кто Вы?

Класс

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем тебе доступ ко всем скрытым задачам в этой статье - 299 руб,

... или ко всем скрытым задачам во всех 99 статьях учебника - 899 руб.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

Хочу помочь YouClever - 299 руб
Хочу помочь YouClever - 899 руб.

Я уже зарегистрирован / оплатил

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть