Площадь поверхности (2020)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Площадь поверхности призмы

Есть ли общая формула? Нет, в общем случае нет. Просто нужно искать площади боковых граней и суммировать их.

Площадь полной поверхности призмы – это сумма площадей всех граней.

 

Формулу можно написать для прямой призмы:

 , где   - периметр основания.

 

Но всё-таки гораздо проще в каждом конкретном случае сложить все площади, чем запоминать дополнительные формулы. Для примера посчитаем полную поверхность правильной шестиугольной призмы.

Пусть сторона основания равна  , а боковое ребро равно  .

 

Все боковые грани – прямоугольники. Значит  .

  - это уже выводили при подсчёте объёма.

Итак, получаем:

 .

Площадь поверхности пирамиды

Для пирамиды тоже действует общее правило:

Площадь полной поверхности пирамиды – это сумма площадей всех граней.

 

Теперь давай посчитаем площадь поверхности самых популярных пирамид.

Площадь поверхности правильной треугольной пирамиды

Пусть сторона основания равна  , а боковое ребро равно  . Нужно найти   и  .

И тогда

 

Вспомним теперь, что

  - это площадь правильного треугольника  .

И еще вспомним, как искать эту площадь. Используем формулу площади:

 .

У нас « » - это  , а « » - это тоже  , а  .

Значит,  .

Теперь найдем  .

Пользуясь основной формулой площади и теоремой Пифагора, находим

 

Внимание: если у тебя правильный тетраэдр (т.е.  ), то формула получается такой:

 .

Площадь поверхности правильной четырехугольной пирамиды

Пусть сторона основания равна  , а боковое ребро равно  .

 

В основании – квадрат, и поэтому  .

Осталось найти площадь боковой грани

 

Площадь поверхности правильной шестиугольной пирамиды.

Пусть сторона основания равна  , а боковое ребро  .

 

Как найти  ? Шестиугольник   состоит ровно из шести одинаковых правильных треугольников. Площадь правильного треугольника мы уже искали при подсчете площади поверхности правильной треугольной пирамиды, здесь используем найденную формулу.

 

Ну, и площадь боковой грани мы уже искали аж два раза

 

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике, 

А также получить доступ к учебнику YouClever без ограничений...

можно кликнув по этой ссылке.

 

 

 

Комментарии

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Привет!

2/3 статьи, а также разбор задач доступны только ученикам YouClever.

Если вы хотите им стать, пройдите по ссылке и ознакомьтесь с условиями.

Или оставьте Email и получите доступ к 5-ти статьям учебника бесплатно.

Удачи,
Александр Кель

Оставить Email

Имя

E-mail

Кто Вы?

Класс

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем тебе доступ ко всем скрытым задачам в этой статье - 299 руб,

... или ко всем скрытым задачам во всех 99 статьях учебника - 899 руб.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

Хочу помочь YouClever - 299 руб
Хочу помочь YouClever - 899 руб.

Я уже зарегистрирован / оплатил

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть