Линейные неравенства. Исчерпывающий гид (2020)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Раз уж ты оказался на этой теме, то ты наверняка уже знаком с темой «Линейные уравнения».

Если нет, то лучше скорей отправляйся исправлять это недоразумение. Без усвоенной темы «Линейные уравнения» спокойное плавание в «Линейных неравенствах» не гарантировано.

Итак, надеюсь, ты уже знаком с линейными уравнениями, поэтому можно смело покорять неравенства!

Что такое «линейные неравенства»?

Если ты ознакомился с линейными уравнениями, то уже знаком с Васей, который раздавал яблоки своим друзьям. Давай вернемся к примеру с Васей (может, и нам что-то перепадет?).

Так вот, предположим, что у Васи больше, чем   яблок. Все свои яблоки он хочет раздать поровну троим друзьям. По сколько яблок получит каждый друг?

Если обозначить через   количество яблок, которое достанется каждому из трех друзей, то получим следующее линейное неравенство:

 

Дальше мы делим обе части составленного неравенства на   и получаем:

 

 

Таким образом, каждый друг щедрого Васи получит больше, чем   яблока.

Ну вот и справились с неравенством!

Сейчас я введу формализованное определение линейного неравенства и будем разбираться с ним дальше.

Линейные неравенства - это неравенства вида:

  •  
  •  
  •  
  •  

где   и   – любые числа, причем  ;   - неизвестная переменная.

Например:

 

 

 

 

Все приведенные выше неравенства являются линейными.

Во всех них «сидит» очень важная особенность: в таких неравенствах нет иксов в квадрате, в кубе и т.д., кроме того в этих неравенствах нет деления на икс и икс не находится под знаком корня.

Чтобы лучше распознавать линейные неравенства, настоятельно рекомендую тебе еще раз заглянуть в раздел «Скрытые» линейные уравнения или…» темы «Линейные уравнения. Начальный уровень.».

Линейные неравенства обладают не меньшим талантом «скрываться».

Чтобы не попасть впросак и с легкостью преобразовывать любые неравенства надо знать и успешно применять 3 очень важных правила. Эти знания здорово упростят тебе жизнь на пути в решении неравенств.

Правила преобразования неравенств

Два неравенства равносильны, если они имеют одинаковые решения.

Решить неравенство – значит найти все значения переменной, при которых неравенство обращается в верное числовое неравенство.

Для упрощения процесса нахождения всех корней неравенства проводятся равносильные преобразования, то есть проводится замена данного неравенства более простым, при этом не должны потеряться никакие решения и не должно возникнуть никаких посторонних корней.

В общем, это все пока только слова. Давай разбираться прямо на правилах.

ПРАВИЛО 1. Любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный (т.е. при переносе через знак неравенства знаки при слагаемых меняются на противоположные).

Например,

 

Таким образом, можно с уверенностью сказать, что   равносильно  .

Или вот такой пример:

 

В теме «Линейные уравнения» говорилось, что для удобства принято переносить слагаемые с переменной в левую часть, а остальные в правую – так и поступим:

 

 

 

 

Здесь все должно быть понятно, перейдем к следующему правилу.

ПРАВИЛО 2. Обе части неравенства можно умножить/разделить на одно и то же положительное число, при этом получится неравенство, равносильное данному.

Вернемся к нашим двум предыдущим примерам.

В первом примере мы остановились на  . Применим правило 2, разделив обе части неравенства на положительное число  :

 

 

 

Заметил, знак неравенства как был «больше», так и сохранился? Все это потому, что мы делили на положительное число.

Давай закрепим на втором примере, где мы остановились на  . Разделим обе части неравенства на  :

 

 

Делили на положительное число  , поэтому знак неравенства сохранился.

Почему так акцентируется внимание на том, что знак неравенства   сохраняется? А вот потому, что в отличие от преобразований линейных уравнений, преобразования линейных неравенств имеют свою особенность, можно даже сказать «подводный камень». Что это за «камень» должно прояснить правило 3.

ПРАВИЛО 3. Обе части неравенства можно умножить/разделить на одно и то же отрицательное число, меняя знак неравенства на противоположный (т.е. знак   на знак  , и наоборот; знак   на знак  , и наоборот).

Заметил важное отличие от правила 2? Все верно:

  • При умножении/делении на положительное число знак неравенства сохраняется
  • При умножении/делении на отрицательное число знак неравенства меняется на противоположный

Например:

Делим на отрицательное число  , тогда знак неравенства меняется на противоположный:

 

 

Заметил, знак   (меньше) заменили на знак   (больше)?

Или вот такой пример:

 

Делим обе части на отрицательное число  , меняя при этом знак неравенства на противоположный:

 

 

Усвоил? Тогда давай закреплять на примерах

  1.  
  2.  
  3.  
  4.  
  5.  

Не пугайся, что примеры, на первый взгляд, сложней, чем мы с тобой разбирали. Мы ведь знаем все необходимые правила преобразования линейных неравенств, а значит, не пропадем.

Ну что, приступим? Как-никак, это не Эверест покорять.

1.  

Раскроем для начала скобки и приведем подобные слагаемые:

 

2.  

Все, как в первом примере: раскрываем скобки, приводим подобные слагаемые, осуществляем необходимые преобразования:

 

3.  
 

 

4.  

 

5.  

Линейные неравенства с двумя переменными

В теме Линейные уравнения достаточно подробно разобрано понятие линейного уравнения с двумя переменными. Линейное неравенство представляет собой практически то же самое, только знак равенства меняется на знак неравенства  .

Линейные неравенства с двумя переменными имеют вид:

  •  
  •  
  •  
  •  ,

где  ,   и   – любые числа,  .

А вся разница с линейным неравенством с одной переменной только в том, что в неравенство добавляется еще одна переменная  .

Решением неравенства с двумя переменными называется множество пар чисел  , которые удовлетворяют этому неравенству (т.е. при подстановке этих точек неравенство верно).

Для решения линейных неравенств с двумя переменными, используется графический способ.

Давай разберем вот такой пример:

 

Решение:

Как уже упоминалось, решается такое неравенство графически.

Построим график уравнения  . Как ты уже должен был знать из темы «Линейные уравнения», графиком будет прямая.

 

 

Строим график по двум точкам, через которые проходит прямая, к примеру,   и  . Вот, что у меня получилось:

 

ЛИНЕЙНЫЕ НЕРАВЕНСТВА. КОРОТКО О ГЛАВНОМ

Линейными неравенствами называются неравенства вида:

 

 

 

 

где   и   – любые числа, причем    - неизвестная переменная.

Правила преобразования неравенств:

Правило 1. Любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный (т.е. при переносе через знак неравенства знаки при слагаемых меняются на противоположные).

Правило 2. Обе части неравенства можно умножить/разделить на одно и то же положительное число, при этом получится неравенство, равносильное данному.

Правило 3. Обе части неравенства можно умножить/разделить на одно и то же отрицательное число, меняя знак неравенства на противоположный (т.е. знак   на знак  , и наоборот; знак  на знак  , и наоборот).

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ :)

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.  

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.  

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой  доступ ко всем скрытым задачам в этой статье - Купить статью - 299 руб
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Удачи!

Комментарии

Тамара
21 октября 2017

Спасибо. всё чётко и ясно

ответить

Александр (админ)
21 октября 2017

Пожалуйста, Тамара. Мы рады, что тебе понра... :)

ответить

Андрей
05 декабря 2017

А есть примеры с квадратными уравнениями? С нахождением дискриминанта ну короче говоря где получается два корня?

ответить

Александр (админ)
05 декабря 2017

Привет, Андрей. Вот раздел "квадратные уравнения": https://youclever.org/book/kvadratnye-uravneniya-1, если ты об этом. Там вверху переключатель уровней сложности. По этой теме три уровня.

ответить

Александр (админ)
05 декабря 2017

Вообще, если зайти на главную страницу сайта youclever.org, то можно увидеть оглавление по всей математике. Любую тему. Это наш учебник "От чайника до монстра" с 8 по 11 класс для разного уровня подготовки. Там есть примеры.

ответить

Инна
22 декабря 2017

Объясните, пожалуйста, что значит "лежат выше графика прямой"

ответить

Александр (админ)
22 декабря 2017

Инна, привет! Это те точки на плоскости, которые закрашены. Они лежат выше графика прямой, проходящей через точки В и С.

ответить

Николай
04 июня 2018

2x←(-4) знак тоже поменяется?

ответить

Ольгая Трофимова
11 февраля 2019

Мне 70 лет. Хочу вспомнить логарифмы В соцсетях я есть в "одноклассниках"

ответить

Александр (админ)
11 февраля 2019

Прекрасное желание, Ольга! У нас вот здесь хорошо написано про логарифмы. Человеческим языком. Думаю легко вспомните. https://youclever.org/book/logarifmy-1

ответить

Наталия
21 сентября 2019

А если условие ураанения между двумя числами со знаками больше и меньше 18<26-3x<19

ответить

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Добрый день!

Закрытые части учебника - только для учеников YouClever.

Оставьте Email и я расскажу вам как им стать и пришлю в качестве бесплатного бонуса доступ к разделу учебника «Базовые темы» (стоимость раздела - 497 руб).

Значимость этого раздела для ЕГЭ - 14 из 100! Он состоит из 15 тем:

  1. НОК и НОД, признаки делимости и методы группировки;
  2. Степень и ее свойства;
  3. 7 волшебных формул сокращенного умножения;
  4. 5 способов разложения многочлена на множители;
  5. Дроби. Рациональные числа. Операции с дробями;
  6. Все о десятичных дробях;
  7. Задачи на проценты. Как найти процент от числа;
  8. Преобразование выражений. Подробная теория;
  9. Сравнение чисел;
  10. Квадратный корень;
  11. Корень и его свойства. Подробная теория с примерами;
  12. Свойства логарифмов и примеры их решений;
  13. Замена переменных;
  14. Модуль числа;
  15. ОДЗ - область допустимых значений.

Оставить Email

Имя

E-mail

Кто Вы?

Класс

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем тебе доступ ко всем скрытым задачам в этой статье - 299 руб,

... или ко всем скрытым задачам во всех 99 статьях учебника - 899 руб.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

Хочу помочь YouClever - 299 руб
Хочу помочь YouClever - 899 руб.

Я уже зарегистрирован / оплатил

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть