17 июля

3 comments

Параллелепипед и куб. Визуальный гид (ЕГЭ – 2021)

Что такое параллелепипед?

Что за слово такое мудреное – «параллелепипед»?

Что за многогранник скрывается за этим словом? 

Что-то должно быть связано с параллельностью, не правда ли?

Так и есть. Читай статью и ты все поймешь!

Параллелепипед – многоугольник, образованный пересечением трех пар параллельных плоскостей.

Если слишком сложно, просто посмотри на картинку.

Какую фигуру из планиметрии (геометрии с «плоскими» фигурами) напоминает параллелепипед?

Немного похоже на параллелограмм, правда? Только «потолще» и слово подлиннее.

Смотри, запоминай и не путай!

Высота – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.

Та грань, на которую опущена высота, называется основанием.

  • Все грани параллелепипеда – параллелограммы.
  • Противоположные грани параллелепипеда параллельны и равны.

Внимание: передняя и задняя грани параллелепипеда равны, верхняя и нижняя – тоже равны, но не равны (не обязаны быть равны) передняя и верхняя грани – потому что они не противоположные, а смежные.

  • Боковые ребра параллелепипеда равны.
  • Диагонали параллелепипеда пересекаются и точкой пересечения делятся пополам.

Точка пересечения диагоналей называется центром параллелепипеда.

Прямым называется параллелепипед, у которого боковые ребра перпендикулярны основанию.

Вот так:

У прямого параллелепипеда в основании – параллелограмм, а боковые грани – прямоугольники.
Прямоугольным называется параллелепипед, у которого в основании прямоугольник, а боковые ребра перпендикулярны основанию.

Это такая обувная коробка:

У прямоугольного параллелепипеда все гранипрямоугольники.

Давай-ка теперь выведем одну интересную формулу для диагонали прямоугольного параллелепипеда.

Диагональ прямоугольного параллелепипеда равна сумме квадратов его измерений.

\( \displaystyle {{d}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}\).

Видишь, как красиво? На теорему Пифагора похоже, правда? И формула эта как раз и получается из теоремы Пифагора.

Смотри:

\( \displaystyle \Delta BAD\) - прямоугольный, поэтому

\( \displaystyle B{{D}^{2}}=A{{B}^{2}}+A{{D}^{2}}={{b}^{2}}+{{c}^{2}}\)

\( \displaystyle \Delta BD{{D}_{1}}\) - тоже прямоугольный!

Поэтому

\( \displaystyle B{{D}_{1}}^{2}=B{{D}^{2}}+D{{D}_{1}}^{2}\),

Подставим:

\( \displaystyle {{d}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}\)

Вывели формулу.

Куб – параллелепипед, у которого все грани квадраты.

Все ребра куба равны.

Кстати, заметь, что куб – частный вид прямоугольного параллелепипеда.

Поэтому для диагонали куба действует формула, которую мы получили для прямоугольного параллелепипеда.

\( \displaystyle {{d}^{2}}={{a}^{2}}+{{a}^{2}}+{{a}^{2}}\),

То есть

\( \displaystyle d=a\sqrt{3}\)

Давай убедимся в пользе этой формулы.

Представь, что у тебя задача: «Диагональ куба равна \( \displaystyle 5\sqrt{3}\). Найти полную поверхность».

Пользуясь нашей формулой: \( \displaystyle d=a\sqrt{3}\), мы узнали, что \( \displaystyle 5\sqrt{3}=a\sqrt{3}\ \), то есть \( \displaystyle a=5\).

Значит полная поверхность – шесть площадей квадратов со стороной \( \displaystyle a\) -равна:

\( \displaystyle S=6\cdot {{a}^{2}}=6\cdot 25=150\).

Видишь, как быстро? И ты применяй!

Определения:

Параллелепипед — это четырехугольная призма (многогранник с \( \displaystyle 6\) гранями), все грани которой — параллелограммы.

Прямой параллелепипед  это параллелепипед, у которого \( \displaystyle 4\) боковые грани — прямоугольники.

Прямоугольный параллелепипед — параллелепипед, у которого все грани - прямоугольники

Куб — параллелепипед, у которого все грани квадраты.

Высота параллелепипеда – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.

Свойства:

  • Противолежащие грани параллелепипеда параллельны и равны.
  • Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  • Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через точку пересечения диагоналей (центр параллелепипеда), делится ею пополам.
  • Все диагонали прямоугольного параллелепипеда равны между собой и равны сумме квадратов его измерений.
    \( \displaystyle {{d}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}\).

P.S. Последний бесценный совет 🙂

Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ОГЭ или ЕГЭ, для поступления в 10 класс или в институт на бюджет и, самое главное, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это не главное.

Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…

Но думай сам…

Что нужно, чтобы быть наверняка лучше других на ОГЭ или ЕГЭ и быть в конечном итоге… более счастливым?

Набить руку, решая задачи.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можешь воспользоваться нашим сборником задач с подробным разбором, и мы их всячески рекомендуем, потому что они разбиты по темам, по типам и даже собраны в целую программу подготовки.

Если решишь набить руку с помощью наших задач, зайди на сайт 100gia и приобрети одну из программ.

А еще можешь зарегистрироваться и получить доступ к огромному количеству бесплатных материалов, видеоуроков, тестов.

После регистрации ты сможешь:

  • проверить свою готовность к каждому типу задач на ЕГЭ (пройдя тест);
  • подтянуть слабые места с помощью видеоуроков, вебинаров;
  • понять тему с помощью статей учебника YouClever;
  • набить руку, решая задачи и получая проверку и решения;
  • сдать пробный ЕГЭ и получить сразу оценку и разбор ошибок.

Бонус: информатика и физика.

И в заключение…

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Время услышать тебя!

Теперь ты знаешь все про параллелепипед и куб. Ты воспользуешься этим в решении многих задач стереометрии! 

Считай, ты помог себе из будущего 🙂

А теперь мы хотим услышать тебя. Напиши в комментариях ниже свое мнение об этой статье!

Помогла ли она тебе? Все ли было понятно?

А еще ты можешь задать любой вопрос. Мы ответим!

Успехов!

  • Огромное вам СПАСИБО !всё понятно и интересно объяснили,спасибо,было такое ощущение,что вы рядом .

    • Александр Кель:

      Спасибо, Левани!

  • Александр Кель:

    Некоторые комментарии прошлых лет к этой статье:

    Пульхерия Алексеевна
    11 мая 2018
    Спасибо огромное!!!!! Вы такая потрясающая женщина!!! Как вам это удалось????

    Аноним
    05 июня 2018
    Прекрасная статья, большое спасибо!

    Саша
    09 января 2019
    Шикарное объяснение! Спасибо!

    Ольга
    21 января 2019
    Вот бы в школе так объясняли.!!! Всё по полочкам разложено. Спасибо!

    гузаль
    12 июня 2019
    спасибо! все было понятно. И за мотивацию тоже спасибо)))

  • {"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}
    >