Расстояние между плоскостями. Иллюстрированный гид (2019)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Расстояние между параллельными плоскостями – длина отрезка их общего перпендикуляра, заключенного между плоскостями

Вот так:

Расстояние между плоскостями 1

  - расстояние между плоскостями.

Да, но как найти это расстояние в задачах?

Иногда бывает так, что по каким-то соображениям можно прямо увидеть этот общий перпендикуляр.

Вот, например:

Задача:

В кубе   найти расстояние между плоскостями   и  , если ребро куба равно  .

Решаем:

Расстояние между плоскостями 2

Проведем диагональ куба  .

Докажем, что   (тогда будет и  )

1)   - проекция   на  .

  т.к. (  - квадрат), значит (Внимание!) по теореме о трех перпендикулярах  

2)   - проекция   на плоскость  .

  (так как   - квадрат)   по теореме о трех перпендикулярах  .

Итак, вышло:

 

(смотри тему «Перпендикулярность в пространстве», если не совсем хорошо помнишь все теоремы)Теперь нужно найти   - и все!

Вспомним, что  

 . Нарисуем теперь плоскость   отдельно.

Расстояние между плоскостями 3

Посмотри внимательно и убедись, что чертеж именно такой! А теперь уже легко:

 ,

Точно так же  .

И в итоге:  .

 .

Вот и нашли.

Не очень–то просто? Но иногда бывает еще хуже: общего перпендикуляра не видно. Нельзя сказать: вот эта линия перпендикулярна обеим плоскостям. Что же тогда делать? Для того, чтобы найти расстояние между параллельными плоскостями, часто нужно подобрать удобную точку на одной плоскости и найти расстояние от этой точки до другой плоскости.

Как найти расстояние от точки до плоскости, мы подробно обсуждаем в теме «расстояние от точки до плоскости».

Здесь же мы рассмотрим один пример, чтобы понять, как же это «подобрать удобную точку» в конкретных задачах.

Задача:

Расстояние между плоскостями 4

В правильной шестиугольной пирамиде   точки   и   - середины ребер   и   соответственно. Найти расстояние между плоскостями   и  , если сторона основания пирамиды равна  , а боковое ребро равно  .

  точка   и   - трапеция.

Какая же удобная точка?

Вот представь себе – это точка  !

Почему же?

Ну, во первых она лежит на плоскости   - это уже хорошо. А во-вторых из нее удобно опускать перпендикуляр на плоскость  . Давай увидим это:

Расстояние между плоскостями 5

Пусть   - середина  .

Тогда   и  .

Значит  

Опустим   - высоту в  

Тогда   - по построению и  , т.к.    .

Значит,   - и есть расстояние между   и  .

Осталось это   найти.

 

 

 ;  .

 

 ;  

  (высота прямоугольного треугольника)

 

Ответ:  \displaystyle \sqrt{\frac{3}{5}}​

РАССТОЯНИЕ МЕЖДУ ПЛОСКОСТЯМИ. КОРОТКО О ГЛАВНОМ

Расстояние между параллельными плоскостями – длина отрезка их общего перпендикуляра, заключенного между плоскостями

Вот так:

  - расстояние между плоскостями.

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ :)

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.  

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.  

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой  доступ ко всем скрытым задачам в этой статье - Купить статью - 299 руб
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Удачи!

Комментарии

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем тебе доступ ко всем скрытым задачам в этой статье - 299 руб,

... или ко всем скрытым задачам во всех 99 статьях учебника - 899 руб.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

Хочу помочь YouClever - 299 руб
Хочу помочь YouClever - 899 руб.

Я уже зарегистрирован / оплатил

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть