Равносторонний треугольник. Иллюстрированный гид (2020)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Равносторонний треугольник. Равносторонний треугольник - треугольник, у которого все стороны равны.

Какие же особенные свойства присущи равностороннему треугольнику?

Равносторонний треугольник. Свойства.

Свойство 1. В равностороннем треугольнике все углы равны между собой и равны  .

Естественно, не правда ли? Три одинаковых угла, в сумме  , значит, каждый по  .

Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).

Почему так? А посмотрим-ка на равносторонний треугольник:

Центр равностороннего треугольника. Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.

Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром! В равностороннем треугольнике оказалось не   особенных линий, как во всяком обычном треугольнике, а всего три!

Итак, ещё раз:

Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.
Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной.
Описанная и вписанная окружности в равностороннем треугольнике.  

Уже должно быть очевидно, отчего так.

 

Посмотри на рисунок: точка   – центр треугольника. Значит,   – радиус описанной окружности (обозначили его  ), а   – радиус вписанной окружности (обозначим  ).

Но ведь точка   – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении  , считая от вершины.

Поэтому  , то есть  .

Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.

Давай удостоверимся в этом.

Равносторонний треугольник. Высота

Равносторонний треугольник. Высота.  

 

Почему?

 

Рассмотрим   – он прямоугольный.

 .

Равносторонний треугольник. Радиус описанной окружности

Равносторонний треугольник. Радиус описанной окружности.  

А это почему?
 

 

Мы уже выяснили, что точка   – не только центр описанной окружности, но и точка пересечения медиан. Значит,  .

Величину   мы уже находили. Теперь подставляем:

 

Равносторонний треугольник. Радиус вписанной окружности

Равносторонний треугольник. Радиус вписанной окружности.  

Это уже теперь должно быть совсем ясно

 

 .

Ну вот, все основные сведения обсудили. Конечно, можно задавать сотни вопросов про всякие длины всяких отрезков в равностороннем треугольнике.

Но главное, что следует иметь в виду, решая задачки о равностороннем треугольнике, – это то, что все его углы известны – равны   и все высоты являются и биссектрисами, и медианами, и серединными перпендикулярами.

РАВНОСТОРОННИЙ ТРЕУГОЛЬНИК. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Равносторонний треугольник - треугольник, у которого все стороны равны:  .

  • В равностороннем треугольнике все углы равны между собой и равны  .
  • В равностороннем треугольнике каждая медиана совпадает с биссектрисой и высотой, которые проведены из той же вершины
  • Точки пересечения высот, биссектрис, медиан и серединных перпендикуляров равностороннего треугольника совпадают.
  • Центры вписанной и описанной окружностей равностороннего треугольника совпадают: точка  .
  • В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной:  .

В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны  :

  • Высота=медиане=биссектрисе 
  • Радиус описанной окружности 
  • Радиус вписанной окружности 
  • Площадь 
  • Периметр 

 

 

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER

Получить доступ к учебнику YouClever без ограничений можно кликнув по этой ссылке:

 ПОЛУЧИТЬ ДОСТУП К УЧЕБНИКУ YOUCLEVER!

 

 

 

Комментарии

гриша
18 мая 2019

Спасибо

ответить

Александр (админ)
18 мая 2019

Пожалуйста, Гриша!

ответить

богдан
06 июня 2019

то есть если r = 18 то вся высота треугольника будет 36 ?

ответить

Алексей Шевчук
07 июня 2019

нет, высота в 3 раза больше r, то есть 54

ответить

Даурен
23 июля 2019

высота 27

ответить

Алексей Шевчук
25 июля 2019

Даурен, высота была бы 27, если бы радиус описанной окружности равнялся 18, но, как я понял, вопрос был о радиусе вписанной окружности (r = 18).

ответить

Gabit
18 сентября 2019

Спасибо большое, хоть дочка и учится в школе с другим языком обучения, символы в математике едины и Ваша статья ей помогла.

ответить

Александр (админ)
18 сентября 2019

Отлично, Gabit! Очень приятно. Математика действительно универсальна и у нас учатся люди со всего света.

ответить

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Привет!

2/3 статьи, а также разбор задач доступны только ученикам YouClever.

Если вы хотите им стать, пройдите по ссылке и ознакомьтесь с условиями.

Или оставьте Email и получите доступ к 5-ти статьям учебника бесплатно.

Удачи,
Александр Кель

Оставить Email

Имя

E-mail

Кто Вы?

Класс

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем тебе доступ ко всем скрытым задачам в этой статье - 299 руб,

... или ко всем скрытым задачам во всех 99 статьях учебника - 899 руб.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

Хочу помочь YouClever - 299 руб
Хочу помочь YouClever - 899 руб.

Я уже зарегистрирован / оплатил

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть