Скрещивающиеся прямые

Как определяется угол между скрещивающимися прямыми?

Ты можешь спросить, а чего тут определять? Угол, он и в Африке (то есть в пространстве) – угол!

И действительно, если прямые лежат в одной плоскости, то угол между ними ищется так же, как и на плоскости:

Наименьший из двух углов, образованных при пересечении.

Но что же делать, если прямые совсем не пересекаются?

Читай эту статью и всё узнаешь!

Скрещивающиеся прямые — коротко о главном

Если прямые лежат в разных плоскостях (т.е. не пересекаются), нужно через произвольную точку на одной прямой (например, прямой  \displaystyle a) провести прямую, параллельную другой прямой (например, прямую  \displaystyle {a}’||a).

Скрещивающиеся прямые — подробнее

Как найти угол, если прямые не пересекаются?

Вот, например: прямые \displaystyle a и \displaystyle b скрещиваются. Какой угол между ними?

Чтобы это определить, делаем так: через произвольную точку одной прямой (например \displaystyle b), нужно провести прямую \displaystyle {a}’||a.

И тогда угол между \displaystyle a и \displaystyle b будет равен (по определению!) углу между \displaystyle {{a}’} и \displaystyle b.

Да, но как это применить в задачах? Давай посмотрим.

Решение задач на угол между скрещивающимися прямыми

В кубе \displaystyle ABCD{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}} найти угол между \displaystyle AC и \displaystyle D{{C}_{1}}.

Решаем:

Прямые \displaystyle AC и \displaystyle D{{C}_{1}} не пересекаются, но нужно как-то найти угол между ними.

Пользуемся правилом: через точку \displaystyle {{C}_{1}} проведем прямую \displaystyle {{A}_{1}}{{C}_{1}}. Она будет параллельна \displaystyle AC.

Значит, угол между \displaystyle AC и \displaystyle D{{C}_{1}} равен углу между \displaystyle {{A}_{1}}{{C}_{1}} и \displaystyle D{{C}_{1}}. Осталось его найти.

Смотри: \displaystyle {{A}_{1}}{{C}_{1}}, \displaystyle {{A}_{1}}D и \displaystyle D{{C}_{1}} – диагонали граней куба, поэтому \displaystyle {{A}_{1}}{{C}_{1}}={{C}_{1}}D={{A}_{1}}D, то есть \displaystyle \Delta {{A}_{1}}{{C}_{1}}D – равносторонний.

Поэтому \displaystyle \angle {{A}_{1}}{{C}_{1}}D=60{}^\circ .

Ответ:  \displaystyle 60{}^\circ .

 

Бонус: Вебинар из нашего курса подготовки к ЕГЭ по математике

Задачи на скрещивающиеся прямые и углы между ними попадаются сплошь и рядом в этом вебинаре.

ЕГЭ 8. Куб. Параллелепипед. Призма – расстояния и углы в пространстве

На этом уроке мы на примере самых простых объемных фигур научимся находить важнейшие вещи в стереометрии — расстояния и углы в пространстве.

Самые бюджетные курсы по подготовке к ЕГЭ на 90+

Сдай ЕГЭ на 90+ с автором этого учебника

Алексей Шевчук — учитель с 20-летним стажем

математика, информатика, физика

Запишитесь на занятия:

+7 (905) 541-39-06

alexei.shevchuk@youclever.org

  • сотни моих учеников поступили в лучшие ВУЗы страны
  • автор самого понятного учебника по математике YouClever, по которому учатся десятки тысяч школьников и учителей;
  • закончил МФТИ, преподавал на малом физтехе;
  • профессиональный репетитор c 2003 года;
  • преподаю как на русском, так и на английском языках, готовлю к международным экзаменам;
  • в 2021 году сдал ЕГЭ на 100 баллов;

Добавить комментарий для Bakut Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2 комментария