21 июля

1 comments

Касательные, касающиеся окружности. Визуальный гид (ЕГЭ – 2021)

В обычной жизни ты очень хорошо представляешь себе, что значит слово «коснуться».

И вот представь себе, в математике тоже существует такое понятие.

В этой теме мы разберёмся с выражениями «прямая касается окружности» и «две окружности касаются».

 Итак, приступим!

Определения и основная теорема

Прямая касается окружности, если имеет с ней ровно одну общую точку.

Такая прямая называется касательной к данной окружности.

Посмотри-ка внимательно: очень похоже на жизнь, не правда ли? Прямая на картинке лишь чуть-чуть дотрагивается до окружности, касается ее.

Ну вот, и точно так же:

Две окружности касаются, если имеют ровно одну общую точку.

Что же тебе нужно знать о касательных и касающихся окружности?

Самая важная теорема гласит, что:

Радиус, проведённый в точку касания, перпендикулярен касательной.

Запомни это прямо как таблицу умножения! Все остальные факты о касательных и касающихся окружностях основаны именно на этой теореме.

Доказывать её мы здесь не будем, а вот как эта самая важная теорема работает, увидим сейчас несколько раз.

Угол между касательной и хордой

Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла.

Прежде всего: как это понимать? Подробнее о том, что такое «градусная мера дуги», написано в теме «Окружность. Вписанный угол».

Здесь напомним только, что в дуге столько же градусов, сколько в центральном угле, заключающем эту дугу. 

То есть «градусная мера дуги» – это «сколько градусов в центральном угле» – и всё!

Ну вот, как говорит Карлсон, продолжаем разговор.

Рисуем ещё раз теорему об угле между касательной и хордой.

Смотри, хорда \( \displaystyle AB\) разбила окружность на две дуги. Одна дуга находится ВНУТРИ угла \( \displaystyle BAC\), а другая дуга – внутри угла \( \displaystyle BAD\).

И теорема об угле между касательной и хордой говорит, что \( \displaystyle \angle CAB\) равен ПОЛОВИНЕ угла \( \displaystyle AOB\), \( \displaystyle \angle DAB\) равен ПОЛОВИНЕ большего (на рисунке - зеленого) угла \( \displaystyle AOB\).

При чем же тут тот факт, что радиус, проведенный в точку касания, перпендикулярен касательной?

Сейчас и увидим. \( \displaystyle OA\) – радиус, \( \displaystyle AC\) – касательная.

Значит, \( \displaystyle \angle OAC=90{}^\circ \). Поэтому:\( \displaystyle \angle 1=90{}^\circ -\angle 4\). Но \( \displaystyle \angle 2=\angle 1\) (\( \displaystyle OA\) и \( \displaystyle OB\) – радиусы)\( \displaystyle \angle 2=90{}^\circ -\angle 4\).

И осталось вспомнить, что сумма углов треугольника \( \displaystyle AOB\) равна \( \displaystyle 180{}^\circ \).

Пишем:

Короче:

Здорово, правда? И самым главным оказалось то, что \( \displaystyle \angle OAC=90{}^\circ \).

Равенство отрезков касательных

Задумывался ли ты над вопросом «а сколько касательных можно провести из одной точки к одной окружности»? Вот, представь себе, ровно две! Вот так:

А ещё более удивительный факт состоит в том, что:

Отрезки касательных, проведённых из одной точки к одной окружности, равны.

То есть, на нашем рисунке, \( \displaystyle AB=AC\).

И для этого факта тоже самым главным является то, что радиус, проведённый в точку касания, перпендикулярен касательной.

Вот, убедись: проведём радиусы \( \displaystyle OB\) и \( \displaystyle OC\) и соединим \( \displaystyle O\) и \( \displaystyle A\).

\( \displaystyle OB\) – радиус.

\( \displaystyle AB\) – касательная, значит, \( \displaystyle OB\bot AB\).
Ну, и так же \( \displaystyle OC\bot AC\).

Получилось два прямоугольных треугольника \( \displaystyle AOB\) и \( \displaystyle AOC\), у которых:

  • \( \displaystyle OB=OC\) - равные катеты
  • \( \displaystyle OA\) - общая гипотенуза

\( \displaystyle \Rightarrow \Delta AOB\ =\ \Delta AOC\)

(заглядываем в тему "Прямоугольный треугольник", если не помним, когда бывают равны прямоугольные треугольники).

Но раз \( \displaystyle \Delta AOB=\Delta AOC,\) то\( \displaystyle AB=AC\). УРА!

И ещё раз повторим – этот факт тоже очень важный:

Отрезки касательных, проведённых из одной точки, – равны.

И есть ещё один факт, который мы здесь не будем доказывать, но он может оказаться тебе полезен при решении задач.

Для любой прямой \( \displaystyle AD\), пересекающей окружность,\( \displaystyle AD\cdot AC=A{{B}^{2}}\), где \( \displaystyle AB\) – отрезок касательной.

Хитроумными словами об этом говорят так:

«квадрат длины отрезка касательной равен произведению секущей на её внешнюю часть».

Страшно? Не бойся, помни только, что в буквах это:

Общая касательная к двум окружностям

Прямая, которая касается двух окружностей, называется их общей касательной.

Общие касательные бывают внешние и внутренние.

Смотри на картинки.

Две внутренние общие касательные.

Две внешние общие касательные.

А всего – четыре! Не больше, но может быть меньше.

Вот так:

Есть только две внешние общие касательные.

Или так: одна внутренняя и две внешних.

А может быть вообще так:

Только одна общая касательная.

И снова факты:

  • Длины отрезков двух внутренних общих касательных равны
  • Длины отрезков двух внешних общих касательных равны.

НО! При этом: внешние и внутренние касательные – разные! (а некоторых, может, и вообще нет…)

Касающиеся окружности

Касание окружностей бывает внешним и внутренним.

Вот такая картинка называется

«окружности касаются внешним образом».

А вот такая картинка называется

«окружности касаются внутренним образом».

Что же самое главное нужно знать?

Если две окружности касаются, то точка касания лежит на прямой, соединяющей центры. Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей.

Если тебе показалось слишком длинно – посмотри картинку. Может быть ещё так:

Ура, теперь ты полностью вооружён на борьбу с касательными – дерзай! 🙂

Касательная – прямая, которая имеет с окружностью только одну общую точку.
  • Касательная окружности перпендикулярна радиусу, проведённому в точку касания.

Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла: \( \displaystyle \angle CAB=\frac{1}{2}\angle AOB\), где:

  • \( \displaystyle DC\) – касательная,
  • \( \displaystyle AB\) – хорда,
  • \( \displaystyle BAC\) – угол, внутри которого находится дуга \( \displaystyle AB\).
  • Отрезки касательных, проведённых из одной точки к одной окружности, равны: \( \displaystyle AB=AC\)
  • Углы, образованные касательными, проведёнными из одной точки, и прямой, проходящей через центр окружности и эту точку, равны: \( \displaystyle \angle BAO=\angle CAO\).
  • Секущая – прямая, которая пересекает окружность в двух различных точках: \( \displaystyle D\) и \( \displaystyle C\).
  • Для любой прямой \( \displaystyle AD\), пересекающей окружность:
    \( \displaystyle AD\cdot AC=A{{B}^{2}}\),где \( \displaystyle AB\)- отрезок касательной.

Касание окружностей: если две окружности касаются, то точка касания лежит на прямой, соединяющей их центры. Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей:

Внешнее касание

Внутреннее касание

Для двух окружностей с центрами \( \displaystyle {{O}}\) и \( \displaystyle {{O}_{1}}\), и радиусами \( \displaystyle R=OA\) и \( \displaystyle r={{O}_{1}}A\):

  • при внешнем касании: \( \displaystyle {{O}}{{O}_{1}}=R+r\);
  • при внутреннем касании: \( \displaystyle {{O}}{{O}_{1}}=R-r\).

P.S. Последний бесценный совет 🙂

Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ОГЭ или ЕГЭ, для поступления в 10 класс или в институт на бюджет и, самое главное, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это не главное.

Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…

Но думай сам…

Что нужно, чтобы быть наверняка лучше других на ОГЭ или ЕГЭ и быть в конечном итоге… более счастливым?

Набить руку, решая задачи.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можешь воспользоваться нашим сборником задач с подробным разбором, и мы их всячески рекомендуем, потому что они разбиты по темам, по типам и даже собраны в целую программу подготовки.

Если решишь набить руку с помощью наших задач, зайди на сайт 100gia и приобрети одну из программ.

А еще можешь зарегистрироваться и получить доступ к огромному количеству бесплатных материалов, видеоуроков, тестов.

После регистрации ты сможешь:

  • проверить свою готовность к каждому типу задач на ЕГЭ (пройдя тест);
  • подтянуть слабые места с помощью видеоуроков, вебинаров;
  • понять тему с помощью статей учебника YouClever;
  • набить руку, решая задачи и получая проверку и решения;
  • сдать пробный ЕГЭ и получить сразу оценку и разбор ошибок.

Бонус: информатика и физика.

И в заключение…

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Поделись с нами!

Теперь ты знаешь все о касании окружностей и о касательных прямых! И я очень надеюсь, что однажды эти знания тебе пригодятся!

Напиши нам в комментариях ниже, понравилась ли тебе статья и все ли было понятно. Нам будет очень интересно узнать твое мнение 🙂

И если остались вопросы, задай их там же!

Мы обязательно ответим.

Успехов!

  • Александр Кель:

    Некоторые комментарии прошлых лет к этой статье:

    Камиль Богуцкий
    15 октября 2017
    Замечательно подобранный материал. Спасибо!

    Александр Кель (админ)
    15 октября 2017
    Камиль, большое спасибо! Передам ваш отзыв автору этого материала Елене Евгеньевне Баштовой

    Юлия Рябова
    04 ноября 2017
    Более толкового, полного, наглядного и потому очень понятного и доброжелательного объяснения, не встречала. Спасибо уважаемой Елене Евгеньевна. Браво.

    Александр (админ)
    04 ноября 2017
    Юлия, огромное спасибо! Елене Евгеньевне, думаю, будет приятно слышать! )

    Vufkan
    07 ноября 2019
    Спасибо вам вы очень помогли!

    Александр (админ)
    07 ноября 2019
    Спасибо Vufkan! Очень рады! Заходи еще )
    Еlen

    22 января 2020
    Привет из Латвии. Огромное спасибо за исчерпывающую информацию.
    Александр (админ)

    22 января 2020
    Привет, Латвия! )) Спасибо, Elen. Очень приятно, что понравилось!

  • {"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}
    >