Высота. Коротко о главном.

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Три высоты любого треугольника пересекаются в одной точке.

Высоты треугольника обратно пропорциональны сторонам, на которые они опущены:  .

Способы вычисления длины высоты, проведенной к стороне BC:

1) Через сторону и угол треугольника:  .

2) Через все 3 стороны треугольника:

 ,

где   - полупериметр треугольника:  .

3) Через сторону и площадь треугольника:  .

4) Через стороны треугольника и радиус описанной окружности:
 ,

где   - радиус описанной окружности.

Что такое высота треугольника?

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Давай нарисуем:

Высота треугольника. Иллюстрация.

На этом рисунке   – высота.

Но иногда высота ведёт себя, как непослушный ребенок – «выбегает» из треугольника. Это бывает в тупоугольном треугольнике.

И тогда получается так:

Частные случаи построения высоты треугольника.

В общем, не нужно пугаться, если основание высоты оказалось не на стороне треугольника, а «за» треугольником, на продолжении стороны. Как же решать задачи, в которых участвует высота? Нужно стремиться применить какие-нибудь знания о прямоугольном треугольнике – ведь где высота – там и прямой угол.

Давай попробуем.

Вот есть, скажем, задача:

В треугольнике   с тупым углом   проведена высота  . Найти  , если  ,  ,  .

Решаем:

Условие задачи. Иллюстрация. Смотри: из-за того, что угол   – тупой, высота   опустилась на продолжение стороны  , а не на саму сторону.

Теперь давай увидим во всём этом два прямоугольных треугольника.

Смотри их целых два:

Решение задачи.

Применяем теорему Пифагора к треугольнику  :

 , то есть  ;  .

А теперь теорема Пифагора для  :

 ; то есть  ;  .

Теперь осталось только заметить, что  .

Нашли!

А теперь давай зададимся вопросом: а сколько вообще высот у треугольника? Конечно, три! И вот, есть такое утверждение, доказывать которое мы здесь не будем, но знать его нужно, тем более, что запоминается оно просто:

В любом треугольнике все три высоты (или их продолжения) пересекаются в одной точке.

Смотрим, как это бывает:

a) Сами высоты пересекаются:

Пересечение высот в равнобедренном треугольнике.

b) Пересекаются продолжения:

Пересечение высот в равнобедренном треугольнике 2.

Ну вот, про высоту и запоминать-то нужно всего ничего:

  • Задача про высоту часто решается с помощью знаний о прямоугольном треугольнике.
  • Три высоты (или три продолжения) пересекаются в одной точке.
    (Но! Это НЕ центр НИКАКОЙ окружности )

Высота треугольника – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Высота треугольника. Иллюстрация определения.

Обрати внимание, что, в отличие от биссектрисы и медианы, высота может находиться вне треугольника. Вот так, например:

Частный случай высоты вне треугольника.

Немного о терминологии:основанием высоты называют ту точку, в которой высота пересекает противоположную сторону (или её продолжение).

Задачи, связанные с высотой, часто решаются при помощи знаний о прямоугольном треугольнике. Но попадаются задачи и похитрее, при решении которых лучше обладать дополнительными знаниями заранее, а не выводить их «с нуля». Сейчас мы обсудим некоторые из них.

В треугольнике проведено две высоты

Две высоты в треугольнике. Иллюстрация.

Первый «неожиданный факт»:

 

Почему бы это? Да очень просто! У них общий угол   и оба – прямоугольные. Значит, подобны по двум углам.

Второй «неожиданный» факт:

 
Две высоты в треугольнике. Иллюстрация 2. Здесь тоже подобие по двум углам:   (как вертикальные) и по прямому углу.

Третий, по–настоящему неожиданный факт:

 


Две высоты в треугольнике. Иллюстрация 3.

Вот это уже интереснее, правда? Давай разбираться, почему так.

  • Во-первых, конечно, у этих треугольников есть одинаковый (и даже общий) угол  .
  • А во–вторых …ты помнишь ещё первый "неожиданный" факт? Ну, что  ? Вспоминаем и применяем!

Запишем отношения соответствующих сторон.

Две высоты в треугольнике. Отношение сторон. Иллюстрация 1. Итак,  .Следовательно,  

Перепишем по–другому:  

Отношение сторон. Иллюстрация 1. Ух, да это же – отношение сторон для треугольников   и  !

В итоге мы получили, что у треугольников   и  

  1. Угол   – общий;
  2. Отношение сторон, заключающих этот угол – одинаковы:  .

Значит, мы получили, что:

 

Но самое интересное ещё впереди!

Каков же коэффициент подобия этих треугольников? То есть чему же равно это самое отношение  ?

Рисуем:

Подобные треугольники. Иллюстрация. Где наши знания о прямоугольном треугольнике? Что такое  ? Катет, прилежащий к углу  . А что такое  ? Гипотенуза!

Значит,  .

Потрясающе, не правда ли?

Давай сформулируем ещё раз, чтобы лучше запомнить:

Две высоты в треугольнике. Отношение сторон. Иллюстрация 2.   

Ну вот, две высоты в треугольнике рассмотрены. А теперь…

В треугольнике проведены три высоты.

Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:

В любом треугольнике три высоты или их продолжения пересекаются в одной точке.

Доказывать это утверждение мы здесь, пожалуй, не будем.

Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».

  1. Треугольник остроугольный – тогда пересекаются сами высоты Остроугольный треугольник. Три высоты - пересекаются.
  2. Треугольник тупоугольный – тогда пересекаются продолжения высот

Что же полезного мы ещё не обсудили?

Угол между высотами.

Давай узнаем, вдруг угол между высотами можно как–то выразить через углы треугольника? Давай рассмотрим остроугольный треугольник.

Остроугольный треугольник. Угол между высотами. Итак, нам хотелось бы найти  . Смотрим на  . Замечаем, что наш   – внешний угол в этом треугольнике. Значит,  .

Чему же равны   и  ?

Смотри: из   выходит, что  . Конечно, таким же образом из   получается, что  .

Теперь  .

Но что же это такое? Ведь сумма угла углов треугольника -  ! Значит,  .

Итак, что получилось?

Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

А как же дело обстоит в тупоугольном треугольнике? Давай смотреть…очень внимательно!

Представим, что у нас «главный» не  , а  .

Тупоугольный треугольник. Высота. Тогда оказывается, что прямые  ,   и   – высоты в  . Но   уже остроугольный (так как все высоты оказались внутри), а про остроугольный треугольник мы уже всё знаем:  . НО!  

Значит, для тупоугольного треугольника:

 .

И ещё кое–что:

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Тупоугольный треугольник. Отношение. Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

 

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника. Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее - которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести. И тогда, если ты будешь точно знать, например? что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

Комментарии

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем для тебя ВСЕ скрытые примеры учебника до конца учебного года.

Всего 299 руб...

Но твоя помощь бесценна! :)  

Спасибо!

Я хочу помочь YouClever!

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть