Высота треугольника. Визуальный гид (2020)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Что такое высота треугольника?

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Давай нарисуем:

Высота треугольника. Иллюстрация.

На этом рисунке   – высота.

Но иногда высота ведёт себя, как непослушный ребенок – «выбегает» из треугольника. Это бывает в тупоугольном треугольнике.

И тогда получается так:

Частные случаи построения высоты треугольника.

В общем, не нужно пугаться, если основание высоты оказалось не на стороне треугольника, а «за» треугольником, на продолжении стороны. Как же решать задачи, в которых участвует высота? Нужно стремиться применить какие-нибудь знания о прямоугольном треугольнике – ведь где высота – там и прямой угол.

Давай попробуем.

Вот есть, скажем, задача:

В треугольнике   с тупым углом   проведена высота  . Найти  , если    .

Решаем:

Условие задачи. Иллюстрация. Смотри: из-за того, что угол   – тупой, высота   опустилась на продолжение стороны  , а не на саму сторону.

Теперь давай увидим во всём этом два прямоугольных треугольника.

Смотри их целых два:

Решение задачи.

Применяем теорему Пифагора к треугольнику  :

 , то есть   .

А теперь теорема Пифагора для  :

 ; то есть   .

Теперь осталось только заметить, что  .

Нашли!

А теперь давай зададимся вопросом: а сколько вообще высот у треугольника? Конечно, три! И вот, есть такое утверждение, доказывать которое мы здесь не будем, но знать его нужно, тем более, что запоминается оно просто:

В любом треугольнике все три высоты (или их продолжения) пересекаются в одной точке.

Смотрим, как это бывает:

a) Сами высоты пересекаются:

Пересечение высот в равнобедренном треугольнике.

b) Пересекаются продолжения:

Пересечение высот в равнобедренном треугольнике 2.

Ну вот, про высоту и запоминать-то нужно всего ничего:

  • Задача про высоту часто решается с помощью знаний о прямоугольном треугольнике.
  • Три высоты (или три продолжения) пересекаются в одной точке.
    (Но! Это НЕ центр НИКАКОЙ окружности )

ВЫСОТА ТРЕУГОЛЬНИКА. СРЕДНИЙ УРОВЕНЬ

Высота треугольника – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Высота треугольника. Иллюстрация определения.

Обрати внимание, что, в отличие от биссектрисы и медианы, высота может находиться вне треугольника. Вот так, например:

Частный случай высоты вне треугольника.

Немного о терминологии:основанием высоты называют ту точку, в которой высота пересекает противоположную сторону (или её продолжение).

Задачи, связанные с высотой, часто решаются при помощи знаний о прямоугольном треугольнике. Но попадаются задачи и похитрее, при решении которых лучше обладать дополнительными знаниями заранее, а не выводить их «с нуля». Сейчас мы обсудим некоторые из них.

В треугольнике проведено две высоты

Две высоты в треугольнике. Иллюстрация.

Первый «неожиданный факт»:

 

Почему бы это? Да очень просто! У них общий угол   и оба – прямоугольные. Значит, подобны по двум углам.

Второй «неожиданный» факт:

 
Две высоты в треугольнике. Иллюстрация 2. Здесь тоже подобие по двум углам:   (как вертикальные) и по прямому углу.

Третий, по–настоящему неожиданный факт:

 


Две высоты в треугольнике. Иллюстрация 3.

Вот это уже интереснее, правда? Давай разбираться, почему так.

  • Во-первых, конечно, у этих треугольников есть одинаковый (и даже общий) угол  .
  • А во–вторых …ты помнишь ещё первый "неожиданный" факт? Ну, что  ? Вспоминаем и применяем!

Запишем отношения соответствующих сторон.

Две высоты в треугольнике. Отношение сторон. Иллюстрация 1. Итак,  .Следовательно,  

Перепишем по–другому:  

Отношение сторон. Иллюстрация 1. Ух, да это же – отношение сторон для треугольников   и  !

В итоге мы получили, что у треугольников   и  

  1. Угол   – общий;
  2. Отношение сторон, заключающих этот угол – одинаковы:  .

Значит, мы получили, что:

 

Но самое интересное ещё впереди!

Каков же коэффициент подобия этих треугольников? То есть чему же равно это самое отношение  ?

Рисуем:

Подобные треугольники. Иллюстрация. Где наши знания о прямоугольном треугольнике? Что такое  ? Катет, прилежащий к углу  . А что такое  ? Гипотенуза!

Значит,  .

Потрясающе, не правда ли?

Давай сформулируем ещё раз, чтобы лучше запомнить:

Две высоты в треугольнике. Отношение сторон. Иллюстрация 2.   

Ну вот, две высоты в треугольнике рассмотрены. А теперь…

В треугольнике проведены три высоты.

Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:

В любом треугольнике три высоты или их продолжения пересекаются в одной точке.

Доказывать это утверждение мы здесь, пожалуй, не будем.

Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».

  1. Треугольник остроугольный – тогда пересекаются сами высоты Остроугольный треугольник. Три высоты - пересекаются.
  2. Треугольник тупоугольный – тогда пересекаются продолжения высот

Что же полезного мы ещё не обсудили?

Угол между высотами.

Давай узнаем, вдруг угол между высотами можно как–то выразить через углы треугольника? Давай рассмотрим остроугольный треугольник.

Остроугольный треугольник. Угол между высотами. Итак, нам хотелось бы найти  . Смотрим на  . Замечаем, что наш   – внешний угол в этом треугольнике. Значит,  .

Чему же равны   и  ?

Смотри: из   выходит, что  . Конечно, таким же образом из   получается, что  .

Теперь  .

Но что же это такое? Ведь сумма угла углов треугольника -  ! Значит,  .

Итак, что получилось?

Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

А как же дело обстоит в тупоугольном треугольнике? Давай смотреть…очень внимательно!

Представим, что у нас «главный» не  , а  .

Тупоугольный треугольник. Высота. Тогда оказывается, что прямые  ,   и   – высоты в  . Но   уже остроугольный (так как все высоты оказались внутри), а про остроугольный треугольник мы уже всё знаем:  . НО!  

Значит, для тупоугольного треугольника:

 .

И ещё кое–что:

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Тупоугольный треугольник. Отношение. Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

 

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника. Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее - которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести. И тогда, если ты будешь точно знать, например? что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

ВЫСОТА ТРЕУГОЛЬНИКА. КОРОТКО О ГЛАВНОМ

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Три высоты любого треугольника пересекаются в одной точке.

Высоты треугольника обратно пропорциональны сторонам, на которые они опущены:  .

Способы вычисления длины высоты, проведенной к стороне BC:

1) Через сторону и угол треугольника:  .

2) Через все 3 стороны треугольника:

 ,

где   - полупериметр треугольника:  .

3) Через сторону и площадь треугольника:  .

4) Через стороны треугольника и радиус описанной окружности:
 ,

где   - радиус описанной окружности.

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ :)

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.  

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.  

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой  доступ ко всем скрытым задачам в этой статье - Купить статью - 299 руб
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Удачи!

Комментарии

Дарья Сулейманова
15 января 2018

Сидела и готовилась к зачёту по геометрии около двух часов, заходила на множество разных сайтов. И только на вашем сайте всё написано понятным языком, без заумных терминов. Спасибо!

ответить

Александр (админ)
15 января 2018

Дарья, спасибо! Всей нашей команде очень приятно это слышать. Мы, консультанты, убеждали математиков использовать "человеческий" язык. И они справились очень хорошо. В результате получилось то, что всем нравится. Мы каждый день получаем благодарности. Еще раз спасибо и удачи на зачете!

ответить

Олеся
06 апреля 2018

Готовится с внуком к ОГЭ. Школу закончила 45 лет назад. Учили в то время просто отлично. Многое помню хорошо, но некоторые нюансы забылись. Ваш сайт очень помог. Все лаконично, по существу и без лишних заумных оборотов. Скачала ла себе на телефон. В свободное время просматриваю. С удовольствием решаю задачи. Спасибо Вам.

ответить

Александр (админ)
06 апреля 2018

Олеся, спасибо за такой отзыв и удачи Вашему внуку на всех экзаменах. А сайт я лично попросил математиков написать "человеческим языком" ) Судя по отзывам, они справились.

ответить

Ольга
15 февраля 2019

А как бы еще доказать подобие треугольников HcHHa и АНС Можно без окружностей

ответить

Александр (админ)
15 февраля 2019

Ольга, сейчас работы по написанию нового контента временно приостановлены. Ищем средства... Найдем - продолжим.

ответить

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Добрый день!

Закрытые части учебника - только для учеников YouClever.

Оставьте Email и я расскажу вам как им стать и пришлю в качестве бесплатного бонуса доступ к разделу учебника «Базовые темы» (стоимость раздела - 497 руб).

Значимость этого раздела для ЕГЭ - 14 из 100! Он состоит из 15 тем:

  1. НОК и НОД, признаки делимости и методы группировки;
  2. Степень и ее свойства;
  3. 7 волшебных формул сокращенного умножения;
  4. 5 способов разложения многочлена на множители;
  5. Дроби. Рациональные числа. Операции с дробями;
  6. Все о десятичных дробях;
  7. Задачи на проценты. Как найти процент от числа;
  8. Преобразование выражений. Подробная теория;
  9. Сравнение чисел;
  10. Квадратный корень;
  11. Корень и его свойства. Подробная теория с примерами;
  12. Свойства логарифмов и примеры их решений;
  13. Замена переменных;
  14. Модуль числа;
  15. ОДЗ - область допустимых значений.

Оставить Email

Имя

E-mail

Кто Вы?

Класс

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем тебе доступ ко всем скрытым задачам в этой статье - 299 руб,

... или ко всем скрытым задачам во всех 99 статьях учебника - 899 руб.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

Хочу помочь YouClever - 299 руб
Хочу помочь YouClever - 899 руб.

Я уже зарегистрирован / оплатил

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть