Коротко о главном Начальный уровень

Линейная функция. Коротко о главном.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Пройти пробный ЕГЭ 2017 Пройти пробный ОГЭ 2017

Линейная функция - это функция вида  , где   и   ­– любые числа (коэффициенты).

Рассмотрим, как коэффициенты влияют на месторасположение графика:

  •   - отвечает за угол наклона графика ( )
  •   - точка пересечения с  .

Общие варианты представлены на рисунке:

Для начала скажи мне, что такое функция?

Не знаешь? Тогда сперва прочитай тему «Функции» – она несложная, но очень важная.

Итак, ты усвоил что такое функция.

Повторим: функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции). То есть, если у тебя есть функция  , это значит что каждому допустимому значению переменной   (которую называют «аргументом») соответствует одно значение переменной   (называемой «функцией»). Что значит «допустимому»? Если не можешь ответить на этот вопрос, еще раз вернись к теме «Функции»! Все дело в понятии «область определения»: для некоторых функций не все аргументы одинаково полезны можно подставить в зависимость. Например, для функции   отрицательные значения аргумента   – недопустимы.

Линейная функция

Вернемся, наконец, к теме данной статьи.

Линейной называется функция вида  , где   и   ­– любые числа (они называются коэффициентами).

Другими словами, линейная функция – это такая зависимость, что функция прямо пропорциональна аргументу.

Как думаешь, почему она называется линейной? Все просто: потому что графиком этой функции является прямая линия. Но об этом чуть позже.

Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения   и область значений  .

Какими могут быть значения аргумента линейной функции  ? Правильно, любыми. Это значит, что область определения – все действительные числа:

 

или  .

А множество значений? Тут тоже все просто: поскольку функция прямо пропорциональна аргументу, то чем больше аргумент  , тем больше значение функции  . Значит,   так же как и   может принимать все возможные значения, то есть  , верно?

Верно, да не всегда. Есть такие линейные функции, которые не могут принимать любые значения. Как думаешь, в каком случае возникают ограничения?

Вспомним формулу:  . Какие нужно выбрать коэффициенты   и  , чтобы значение функции y не зависело от аргумента  ? А вот какие:   – любое, но  . И правда, каким бы ни был аргумент  , при умножении на   получится  ! Тогда функция станет равна  , то есть она принимает одно и то же значение при всех  :

 

Теперь рассмотрим пару задач на линейную функцию.

  1. При увеличении аргумента функции   на  , функция увеличилась на  . Найдите коэффициент  .
  2. При увеличении аргумента функции   на  , функция уменьшилась на  . Найдите коэффициент  .
  3. Дана функция  . При  , а при  . Определите коэффициенты   и   функции.

Решения:

1. Пусть начальное значение аргумента равно некому числу  . После увеличения на   аргумент стал равен:  .

Чему была равна функция до увеличения? Подставляем аргумент в формулу:

 

После увеличения:  .

Функция увеличилась на  . Как это записать на «математическом языке» (в виде уравнения)? Изменение – это разность конечного и начального значений. Значит, нужно из конечного значения функции   вычесть начальное:

 

 

Ответ:  .

2. Аналогично предыдущей задаче:

Начальное значение аргумента равно  , конечное –  .

Начальное значение функции:  ;

конечное значение функции:  .

В этот раз функция не увеличилась, а уменьшилась. Это значит, что конечное значение будет меньше начального, а значит, изменение (разность конечного и начального) будет отрицательным:

 

 

Ответ:  .

Если проанализировать решения этих двух задач, можно прийти к важному выводу:

При изменении аргумента линейной функции на   функция изменяется на  . То есть изменение функции всегда ровно в   раз больше изменения аргумента.

По-сути это является определением прямой пропорциональной зависимости.

3. Подставим известные значения аргумента и функции в формулу  :

 

 

Получили два уравнения относительно   и  . Теперь достаточно решить систему этих двух уравнений:

 

Вычтем из первого уравнения второе:

 

Подставим найденное значение k в первое уравнение:

 

Вот и все.

Ответ:  

График линейной функции

Как я уже упоминал ранее, график такой функции – прямая линия. Как известно из геометрии, прямую можно провести через две точки (то есть, если известны две точки, принадлежащие прямой, этого достаточно, чтобы ее начертить).

Предположим, у нас есть функция линейная функция  . Чтобы построить ее график, нужно вычислить координаты любых двух точек. То есть нужно взять любые два значения аргумента   и вычислить соответствующие два значения функции. Затем для каждой пары   найдем точку в системе координат, и проведем прямую через эти две точки.

Проще всего найти функцию, если аргумент  .

Итак, первая точка имеет координаты  .

Теперь возьмем любое другое число в качестве  , например,  .

Вторая точка имеет координаты  .

Ставим эти две точки на координатной плоскости:

Линейная функция 1

Теперь прикладываем линейку, и проводим прямую через эти две точки:

Линейная функция y=2x+1

Вот и все, график построен!

Давай теперь на этом же рисунке построим еще два графика:   и  . Построй их самостоятельно так же: посчитай значение y для любых двух значений  , отметь эти точки на рисунке и проведи через них прямую. Должно получиться так:

Линейная функция 3

Видно, что все три прямые по-разному наклонены и в разных точках пересекают координатные оси. Все дело тут в коэффициентах   и  . Давай разберемся, на что они влияют.

Для начала выясним, что делает коэффициент  . Рассмотрим функцию  , то есть  . Меняя   будем следить, что происходит с графиком.

Итак, начертим графики для разных значений  :

Линейная функция 4

Что ты можешь сказать о них? Чем отличаются графики? Это сразу видно: чем больше  , тем выше располагается прямая. Более того, заметь такую вещь: график пересекает ось   в точке с координатой, равной  !

И правда. Как найти точку пересечения графика с осью  ? Чему равен   в такой точке? В любой точке оси ординат (это название оси  , если ты забыл)  . Значит достаточно подставить   в функцию, и получим ординату пересечения графика с осью  :

 

Теперь по поводу  . Рассмотрим функцию   Будем менять   и смотреть, что происходит с графиком. Построим графики для  

Линейная функция 5

Так, теперь ясно:   влияет на наклон графика. Чем больше   по модулю (то есть несмотря на знак), тем «круче» (под большим углом к оси абсцисс –  ) расположена прямая. Если  , график наклонен «вправо», при   – «влево». А когда  , прямая располагается вдоль оси абсциссс.

Давай разбираться. Начертим новый график  :

Линейная функция y=kx+b

Выберем на графике две точки   и  . Для простоты выберем точку   на пересечении графика с осью ординат. Точка   – в произвольном месте прямой, пусть ее координаты равны  . Рассмотрим прямоугольный треугольник  , построенный на отрезке   как на гипотенузе. Из рисунка видно, что  ,  .

Подставим   в  .

Получается, что  .

Итак, коэффициент   равен тангенсу угла наклона графика, то есть угла между графиком и осью абсциссс. Именно поэтому его (коэффициент  ) обычно называют угловым коэффициентом.

В случае, когда   что соответствует тупому углу:

Линейная функция 7

Если же  , тогда и   следовательно  , то есть прямая параллельна оси абсциссс.

Понимать геометрическое значение коэффициентов очень важно, оно часто используется в различных задачах на линейную функцию.

Например:

1. Найдите коэффициенты   и   линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.

Линейная функция 8

2. Найдите коэффициенты   и   линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.

Линейная функция 9

3. График какой из функций избражен на рисунке?

a)  

b)  

c)  

d)  

Линейная функция 10

Решения:

1. Коэффициент   найти проще простого – это ведь точка пересечения графика с осью  :

 

Угловой коэффициент   – это тангенс угла наклона прямой. Для его нахождения выберем две точки   и   на графике и построим прямоугольный треугольник с гипотенузой  :

Линейная функция 11

 

Теперь можно составить уравнение этой прямой:

 

2. Все аналогично предыдущей задаче.

 

Поскольку график наклонен «влево», угол межну ним и осью абсцисс тупой, а значит, угловой коэффициент отрицательный.

Линейная функция 12

Чтобы было проще найти тангенс угла наклона  , рассмотрим смежный с ним угол  . Тангенсы смежных углов равны по модулю, и противоположны по знаку:

 

 

Уравнение этой прямой выглядит так:

 

3. И снова в первую очередь смотрим на  . Значит, есть смысл рассматривать только функции a), b) и d). Теперь посмотрим, каким должен быть угловой коэффициент? Во-первых, он должен быть отрицательным, значит, выбрасываем ответ b). Остается a) и d).

Чтобы выбрать из них, придется найти тангенс угла наклона графика:

Линейная функция 13

 

Отлично, значит уравнение этой прямой выглядит так:

 

То есть правильный ответ: a.

Точка пересечения графика с осью ординат – это коэффициент  . А что можно сказать про точку пересечения с осью абсцисс?

В случае пересечения с осью   координата  . При пересечении оси   – аналогично, координата  :

 

Да это же простое линейное уравнение! И действительно, такое линейное уравнение говорит нам, при каких значениях аргумента   функция  , то есть корни такого уравнения – это координаты точек пересечения графика функции с осью абсцисс.

Это справедливо, кстати, для любой функции/уравнения. Например, корни квадратного уравнения – это точки пересечения графика квадратичной функции – параболы – с осью  . Но подробнее об этом ты узнаешь в темах «Квадратные уравнения» и «Квадратичная функция».

Комментарии

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем для тебя ВСЕ скрытые примеры учебника до конца учебного года.

Всего 299 руб...

Но твоя помощь бесценна! :)  

Спасибо!

Я хочу помочь YouClever!

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть