Коротко о главном Начальный уровень

ОДЗ. Начальный уровень.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Пройти пробный ЕГЭ 2017 Пройти пробный ОГЭ 2017

Что такое ОДЗ?

Это область допустимых значений, то есть это все значения переменной, при которых выражение имеет смысл.

Например, если перед тобой уравнение  , то ни  , ни   не могут быть отрицательными:

 

Часто в задачах бывает очень важно учесть ОДЗ. То есть некоторые из решений на самом деле решениями не являются.

Давай разберем пример, наглядно показывающий что такое ОДЗ:

Решим уравнение  .

Все очень просто, если ты уже освоил тему «Иррациональные уравнения». Возводим левую и правую части уравнения в квадрат:

 .

Теперь решаем квадратное уравнение. Я воспользуюсь теоремой Виета (если забыл что это такое - посмотри тему «Квадратные уравнения»). Получаем корни:

 

Вроде все? А давай-ка теперь сделаем проверку – подставим полученные значения в начальное уравнение:

  – все верно.

  – неверно! А все почему?

Да потому, что мы не учли ОДЗ: ведь по определению квадратный корень из любого числа не может быть отрицательным. Значит, глядя на уравнение   мы должны сразу же написать:

 

Если помнишь тему «Иррациональные уравнения», ты сразу скажешь, что второе условие в этой системе писать необязательно. И правда, мы ведь потом возведем все в квадрат, и получится, что  , а значит – автоматически неотрицательно. Итак, с помощью этих рассуждений приходим к такой области допустимых значений:

 .

Тогда сразу становится ясно, что корень   не подходит. И остается единственный ответ  .

Функции, для которых важна ОДЗ

Всего мы изучаем несколько разных функций, для которых важна ОДЗ. Вот они:

Тип функции ОДЗ
Обратная зависимость  .
Степенная функция (корень)  
Показательная функция  
Логарифмическая функция  
Тригонометрическая функция

 

 

\[y = {\mathop{\rm tg}\nolimits} x:{\rm{ }}x \ne \frac{\pi }{2} + \pi n,{\rm{ }}n \in \mathbb{Z};\]

\[y = {\mathop{\rm ctg}\nolimits} x:{\rm{ }}x \ne \pi n,{\rm{ }}n \in \mathbb{Z}{\rm{.}}\]

Рассмотрим примеры с каждой из этих функций:

1. ОДЗ обратной зависимости

 .

Замечаем, что в знаменателе правой части формула сокращенного умножения:

 .

ОДЗ:  

Теперь можно спокойно избавляться от одинаковых знаменателей:

 

Согласно ОДЗ второй корень не подходит.

Ответ:  .

2. ОДЗ степенной функции

 .

Такой пример мы уже рассматривали, поэтому реши его самостоятельно.

Ответ:  .

3. ОДЗ показательной функции

 

Не пугайся, тут все просто:

ОДЗ:  

Обе части уравнения строго положительны, поэтому делим все на правую часть:

 

Теперь возможны два варианта: либо основание степени равно  , либо показатель равен  :

 

(квадратное уравнение реши сам)

Теперь вспомним ОДЗ: корень   – «сторонний».

Ответ:  .

4. ОДЗ логарифмической функции

 .

ОДЗ:  

 

С учетом ОДЗ нужно отбросить отрицательный корень:

Ответ:  .

5. ОДЗ тригонометрической функции

\[\frac{{{{\sin }^2}x}}{{\cos x}} = {\mathop{\rm tg}\nolimits} x\]

ОДЗ:  .

Для наглядности изображу область допустимых значений на единичной окружности в виде выколотых точек:

Что такое ОДЗ тригонометрической функции

\[\frac{{{{\sin }^2}x}}{{\cos x}} = {\mathop{\rm tg}\nolimits} x \Leftrightarrow \frac{{\sin x}}{{\cos x}} \cdot \sin x = {\mathop{\rm tg}\nolimits} x \Leftrightarrow {\mathop{\rm tg}\nolimits} x \cdot \sin x = {\mathop{\rm tg}\nolimits} x \Leftrightarrow {\mathop{\rm tg}\nolimits} x\left( {\sin x - 1} \right) = 0 \Leftrightarrow \]

\[\left[ \begin{array}{l}{\mathop{\rm tg}\nolimits} x = 0\\\sin x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pi n,{\rm{ }}n \in \mathbb{Z}\\x = \frac{\pi }{2} + \pi k,{\rm{ }}k \in \mathbb{Z}\end{array} \right.\]

Очевидно, что вторая группа корней не подходит по ОДЗ.

Ответ:  .

Комментарии

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги сделать так, чтобы его не закрыли... 

... а мы откроем для тебя ВСЕ скрытые примеры учебника.

Всего 199 руб...

Но твоя помощь бесценна! :)  

Спасибо!

Я хочу помочь YouClever!

Закрыть