Средний уровень

Тела и поверхности вращения. Визуальный гид (2019)

Что такое тела и поверхности вращения?

Тело вращения – это тело в пространстве, которое возникает при вращении какой-нибудь плоской фигуры вокруг какой-нибудь оси.

Вот самый простой пример: цилиндр.

Берем прямоугольник и начинаем вращать его вокруг одной из сторон.

Смотри

Было Вращаем Стало

Вращение цилиндра

А теперь гораздо хитрее. Бывает так, что ось вращения находится далеко от фигуры, которая вращается.

Например, так

Ось вращения

Вращаем

Вращение

Что получится? Бублик. А по научному ТОР.

фигура ТОР

Ну и так вот можно любую фигуру вертеть вокруг любой оси, и будут получаться разные более или менее сложные тела вращения.

Ну, а поверхность вращения – это просто граница тела вращения. Ведь поверхность это всегда граница тела.

Здесь мы рассмотрим подробно несколько тел вращения. Те, которые встречаются в школьных задачах. Это шар, цилиндр и конус.

Шар

Шар – тело вращения, полученное вращением полуокружности вокруг диаметра.

Было Вращаем Стало

Шар

Вообще-то есть и другое определение шара – через ГМТ (геометрическое место точек)

Шар – геометрическое место точек, удаленных от одной фиксированной точки на расстояние, не более заданного.

Скажу тебе по секрету, что хоть второе определение и пугающее на вид, оно удобнее в обращении. Задумайся, ведь если тебя попросят сказать, что такое шар, ты скажешь что-то вроде

«ну …там есть центр и радиус…, подразумевая, что все точки внутри шара находятся я на расстоянии не большем, чем радиус.

Ну, в общем, шар он и есть шар.

Названия, которые ты должен знать:

Шар. Центр и радиусШар. Диаметр и диаметральное сечение

Незнакомое тебе, наверное, только одно.

Диаметральное сечение шара – сечение, проходящее через центр. Это сечение иногда еще называют большим кругом.

А вообще:

  • Любое сечение шара – круг.
  • Граница шара называется сфера. (Так же, как граница круга – окружность.)

Площадь поверхности сферы

Площадь поверхности сферы    - радиус

Откуда взялось? Умные математики придумали – это не так уж просто – придется просто запомнить.

Объем шара

Объем шара    - радиус

Это еще одна хитрая формула, которую придется запомнить, не понимая, откуда она взялась.

Если ты знаком с производной, то можешь заметить это

 

И это не случайно! Но почему это так вышло, мы тоже здесь обсуждать не будем – читай теорию для сильного уровня.

Цилиндр

Цилиндр – тело, образованное вращением прямоугольника вокруг одной из сторон.

Вообще – то полное имя этого тела «прямой круговой цилиндр», но составители задач и мы вместе с ними по дружбе называем его просто цилиндром. Названия, относящиеся к цилиндру, такие:

Цилиндр

Основания у цилиндра – это круги

Еще у цилиндра есть так называемая развертка.

Развертка цилиндра Представь, что у нас от цилиндра осталась только боковая поверхность, и мы ее разрезали вдоль образующей и развернули.

Что получится? Представь себе, прямоугольник.

Прямоугольник

Развертка цилиндра – прямоугольник.

Площадь поверхности цилиндра

Площадь боковой поверхности

Площадь боковой поверхности цилиндра    - радиус  - высота, она же образующая.

Откуда взялась эта формула? Это как раз легко! Именно потому, что цилиндр можно развернуть, и получится прямоугольник  .

Площадь прямоугольника Площадь этого прямоугольника и есть площадь боковой поверхности цилиндра. Площадь прямоугольника, как мы хорошо помним равна произведению сторон, поэтому  

Площадь полной поверхности цилиндра

Прибавляем теперь площадь двух кругов – оснований и получаем

Площадь полной поверхности цилиндра  

Можно вынести (хотя и не обязательно)  :

 

Но эту формулу неудобно запоминать!

Гораздо проще запомнить, что полная поверхность – сумма боковой поверхности и еще двух кругов – оснований, а боковая поверхность – прямоугольник. И тогда   можно вообще не запоминать, ты всегда сам напишешь, что

 

Объем цилиндра

Объем цилиндра    - радиус основания  - высота

Это точно как у призмы и параллелепипеда

 , только у призмы и параллелепипеда   - это площадь многоугольника, а у цилиндра   - это площадь круга.

Конус

Конус – тело вращения, образованное вращением прямоугольного треугольника вокруг одного из катетов.

Было Вращаем Стало

Конус

И опять же, полное название этого тела: «прямой круговой конус», но во всех задачах у нас говорится просто «конус».

Названия, относящиеся к конусу:

Названия, относящиеся к конусу

Что тут нужно твердо помнить?

  • Основание корпуса – круг
  • Все образующие конуса – равны.

Ясно ли это? Вроде должно быть ясно, ведь образующая – это гипотенуза (одна и та же!) Треугольника, который вращаем, а радиус основания – катет.

У конуса тоже есть развертка.

развертка конуса

Снова представим, что основания нет, разрежем боковую поверхность вдоль образующей и развернём кулек. Что получится?

Представь себе сектор круга. Пусть длина образующей равна  .

Развертка конуса 2 Развертка конуса – сектор круга радиуса  

Площадь поверхности конуса:

Как найти площадь боковой поверхности корпуса? Вспомним о развертке, Ведь для цилиндра все было просто именно с помощью развертки.

Боковая поверхность По формуле площади сектора  Где   - угол при вершине в радианах.

И это уже формула. В некоторых задачах бывает дан именно угол при вершине в развертке конуса. Но если все же даны только образующая и радиус основания? Как быть?

Боковая поверхность 2

Нужно осознать, что же такое дуга в развертке? Это бывшая окружность основания! Поэтому длина этой дуги равна  .

С другой стороны, длина этой же дуги равна  , так как это дуга окружности радиуса  . Поэтому

 

Подставляем

 

Итак,

 , где

  - радиус окружности основания,

  - длина образующей

Ну, и осталось площадь полной поверхности конуса. Прибавим к боковой поверхности площадь круга основания, и получаем

Площадь полной поверхности конуса  Можно вынести  : 

Но, как и для цилиндра, не надо запоминать вторую формулу, гораздо проще всегда пользоваться первой.

Объем конуса

Объем конуса    - радиус основания  - высота

Это так же, как у пирамиды

 , только

  - это не площадь многоугольника, а площадь круга.

А вот откуда взялась  ?, по-прежнему остается загадкой, потому что эта   получена в результате довольно хитрых рассуждений умных математиков. А тебе нужно очень твердо запомнить, что в формулах объема «треугольных» фигур: конуса и пирамиды эта   и есть, а в формулах параллелепипеда, призмы и цилиндра ее нет!

ТЕЛА И ПОВЕРХНОСТИ ВРАЩЕНИЯ. КОРОТКО О ГЛАВНОМ

Тело вращения – это тело в пространстве, которое возникает при вращении какой-нибудь плоской фигуры вокруг какой-нибудь оси.

Например:

Было Вращаем Стало

Поверхность вращения – это граница тела вращения.

В подробной теории, мы рассмотрим несколько тел вращения. Те, которые встречаются в школьных задачах. Это шар, цилиндр и конус.

Комментарии

Мария
07 февраля 2018

Очень понятно, доступно

ответить

Александр (админ)
07 февраля 2018

Мария, мы рады! Заходи к нам и делись с друзьями!

ответить

Евгений
05 марта 2018

Сайт замечательный! Совокупность лёгкого и понятного для прочтения текста и самих рисунков отличная.

ответить

Александр (админ)
05 марта 2018

Спасибо, Евгений! Заходи... )

ответить

Левон
09 мая 2018

Потрясающе! Я в восторге. Всё так хорошо расписано и показано, даже предлагают как можно легче формулами воспользоваться. Продолжайте в том же духе!

ответить

Александр (админ)
09 мая 2018

Спасибо большое, Левон!

ответить

Дилдора
18 мая 2018

Да, отлично! Мне тоже понравился. А как можно скачать, чтобы воспользоваться.

ответить

Александр (админ)
18 мая 2018

Дилдора, привет! К сожалению пока скачать никак нельзя ((( Только если по кускам делать скриншоты и потом распечатать. Руки не доходят сделать.

ответить

Таня
18 июня 2018

Если ты знаком с производной, то можешь заметить это: в формуле пропущен знак производной. А вообще: Молодцы, ребята. Это доступно, лаконично, толково. Успехов Вам и нам.

ответить

Александр (админ)
20 июня 2018

Спасибо, Таня! А в какой формуле пропущен знак производной?

ответить

Таня
01 июля 2018

Vшара=Sповерхности

ответить

Таня
04 июля 2018

V ШТРИХ=Sповерхности

ответить

григорий
04 октября 2018

сколько стоит обучение

ответить

Александр (админ)
04 октября 2018

Григорий у нса два сайта. YouClever.org - это учебник и здесь 99% материала бесплатно. А на сайте, где можно полноценно подготовиться (на 100 gia.ru) есть два варианта обучения. Один стоит 3999 руб и второй 4999 - доступ до даты экзамена по математике. Нажми на кнопку банера справа "Жми сюда" и узнаешь все более подробно.

ответить

Дима
17 января 2019

Окай

ответить

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем для тебя ВСЕ скрытые примеры учебника до конца учебного года.

Всего 299 руб...

Но твоя помощь бесценна! :)  

Спасибо!

Я хочу помочь YouClever!

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть