Теорема синусов. Визуальный гид (2020)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Теорема синусов: формулировка

Что же нам сообщает теорема синусов? Вероятнее всего, что-нибудь о синусах, не правда ли? Давай сформулируем.

Теорема синусов: формулировка

Для любого  

 

(здесь   – радиус описанной окружности).

Первый вопрос, который возникает при взгляде на эту формулу: «Но при чём же здесь вообще  ?». Вот давай именно с него и начнём.

Теорема синусов: доказательство

Тебе уже известно, что около каждого треугольника можно описать окружность. Мы это и сделаем. А потом проведём диаметр  . Пусть этот диаметр пересекает окружность в точке  . Давай рассмотрим  . Что же это за треугольник?

Теорема синусов: доказательство

Ну, конечно же, прямоугольный, ведь в   угол   опирается на диаметр   (вспоминаем тему «Окружность. Вписанный угол»).

Но и кроме того,   в   равен   в  , потому что эти углы опираются на одну дугу   (опять вспоминаем ту же тему…).

А теперь просто запишем выражение для синуса   в прямоугольном    .

Но ведь   – диаметр  , и  .

Вспомним, что   и получим  .

Вот и всё! Провели одну линию, рассмотрели один прямоугольный треугольник – и доказательство готово.

Но как же быть с углами   и  ? – спросишь ты. Да, точно также. Давай рассмотрим  .

Теорема синусов: доказательство 2.

Теперь проведём диаметр   и соединим точки   и  . Как-то тут немного по-другому получается, ты заметил?  , конечно, прямоугольный, так как   опирается на диаметр  . Но теперь  , потому что четырехугольник   – вписанный. (Надеюсь, ты ещё помнишь, что для угла   у нас было  .) В чём же дело? Ну, просто   – тупой, поэтому и получилось такое различие. Но, к счастью, для теоремы синусов это различие не играет роли. Сейчас мы в этом убедимся. Итак, запишем выражение для синуса   в прямоугольном  .

 ; то есть  

Но   (читаем или вспоминаем формулы приведения в тригонометрии.)

Значит,  .

Ну вот, мы рассмотрели и острый, и тупой угол. Если ты все ещё беспокоишься об угле  , то проделай все те же действия самостоятельно и убедись, что все получается. Обрати внимание, что мы доказали «четверное равенство».

 

в такой последовательности:

 

А теперь внимание! Обсудим пользу этой теоремы.

Понимаешь, теорема синусов – единственный разумный способ для нахождения радиуса описанной окружности.

Почему я так говорю? А ты вспомни сам: ну где ещё в формулах участвует  ?! Возможно, правда, ты знаком с формулой  , то есть  , но!

Давай – ка сравним:

Из теоремы синусов:  

Из формулы площади:  .

Чувствуешь разницу? В первой формуле нужно знать только одну сторону и один угол, а во второй формуле – все стороны, да ещё и площадь! Ну и какую формулу легче применить? А кроме того, открою тебе маленький секрет: формула   как раз и доказывается именно с применением теоремы синусов. Чтобы убедиться в этом, читай темы «Площадь круга и его частей, Площадь треугольника и четырехугольника». Итак, теорема синусов бывает полезна и для нахождения синуса какого – то угла, если известны две стороны и один угол, но в основном теорема синусов – главный инструмент для нахождения радиуса описанной окружности. Запомни это очень хорошо!

ТЕОРЕМА СИНУСОВ. КОРОТКО О ГЛАВНОМ

Для любого  :

 

(здесь   – радиус описанной окружности)

 

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ :)

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.  

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.  

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой  доступ ко всем скрытым задачам в этой статье - Купить статью - 299 руб
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Удачи!

Комментарии

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Ok

Добрый день!

Закрытые части учебника - только для учеников YouClever.

Оставьте Email и я расскажу вам как им стать и пришлю в качестве бесплатного бонуса доступ к разделу учебника «Базовые темы» (стоимость раздела - 497 руб).

Значимость этого раздела для ЕГЭ - 14 из 100! Он состоит из 15 тем:

  1. НОК и НОД, признаки делимости и методы группировки;
  2. Степень и ее свойства;
  3. 7 волшебных формул сокращенного умножения;
  4. 5 способов разложения многочлена на множители;
  5. Дроби. Рациональные числа. Операции с дробями;
  6. Все о десятичных дробях;
  7. Задачи на проценты. Как найти процент от числа;
  8. Преобразование выражений. Подробная теория;
  9. Сравнение чисел;
  10. Квадратный корень;
  11. Корень и его свойства. Подробная теория с примерами;
  12. Свойства логарифмов и примеры их решений;
  13. Замена переменных;
  14. Модуль числа;
  15. ОДЗ - область допустимых значений.

Оставить Email

Имя

E-mail

Кто Вы?

Класс

Отправить Закрыть

Привет! 

Нравится наш учебник? Помоги продлить ему жизнь... 

... а мы откроем тебе доступ ко всем скрытым задачам в этой статье - 299 руб,

... или ко всем скрытым задачам во всех 99 статьях учебника - 899 руб.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

Хочу помочь YouClever - 299 руб
Хочу помочь YouClever - 899 руб.

Я уже зарегистрирован / оплатил

Закрыть

Привет!

При регистрации на твой email ушло письмо, содержащее ссылку для подтверждения, пройди по ней, а затем обнови эту страницу.

 

Обновить страницу

Закрыть