28 июля

0 comments

Треугольник. Исчерпывающий гид (ЕГЭ – 2021)

На тему «Треугольник», пожалуй, можно было бы написать целую книжку. Но книжку целиком читать слишком долго, правда?

Поэтому мы здесь рассмотрим только факты, которые касаются вообще любого треугольника.

А всякие специальные темы, такие как равнобедренный треугольник, прямоугольный треугольник и т.д., выделены в отдельные темы – читай книжку по кусочкам.

Вот то, что касается любого треугольника.

Сумма углов треугольника. Внешний угол

Сумма внутренних углов любого треугольника равна \( \displaystyle 180{}^\circ \).

Запомни твердо и не забывай. Доказывать мы это не будем (смотри следующие уровни теории).

Единственное, что тебя может смущать в нашей формулировке – это слово «внутренних».

Зачем оно тут? А вот именно затем, чтобы подчеркнуть, что речь идёт об углах, которые внутри треугольника. А что, разве бывают ещё какие-то углы снаружи? Вот представь себе, бывают.

У треугольника ещё бывают внешние углы. И самое главное следствие из того факта, что сумма внутренних углов треугольника равна \( \displaystyle 180{}^\circ \), касается как раз внешнего треугольника. Так что давай выясним, что же такое этот внешний угол треугольника.

Смотри на картинку: берём треугольник и одну сторону (скажем \( \displaystyle AC\)) продолжаем.

Видишь, получился новый угол, \( \displaystyle \angle BCE\)?

Этот угол образован одной стороной (\( \displaystyle BC\)) треугольника и продолжением другой стороны (\( \displaystyle AC\)).

Вот он и называется внешним углом треугольника \( \displaystyle ABC\) при вершине \( \displaystyle C\).

Конечно, мы бы могли оставить сторону \( \displaystyle AC\), а продолжить сторону \( \displaystyle BC\). Вот так:

Тогда \( \displaystyle \angle ACK\) тоже будет внешним углом при вершине \( \displaystyle C\), да и к тому же он будет равен углу \( \displaystyle BCE\).

Смотри: углы \( \displaystyle BCE\) и \( \displaystyle ACK\) – равны как вертикальные, и оба они имеют право называться внешним углом при вершине \( \displaystyle C\).

А вот про угол \( \displaystyle ECK\) такого сказать ни в коем случае нельзя!

Он образован пересечением двух продолжений сторон!

Угол \( \displaystyle ECK\) вообще равен внутреннему \( \displaystyle \angle C\) треугольника \( \displaystyle ABC\).

Так что не каждый угол снаружи треугольника имеет право называется внешним углом, а только тот, который образован одной стороной и продолжением другой стороны.

Так что же мы должны знать про внешний угол?

Внешний угол треугольника равен сумме двух внутренних, не смежных с ним.

Смотри, на нашем рисунке это означает, что \( \angle 4=\angle 1+\angle 2\).

Как же это связано с суммой углов треугольника?

Давай разберёмся. Сумма внутренних углов равна \( \displaystyle 180{}^\circ \Rightarrow \)

\( \angle 1+\angle 2+\angle 3=180{}^\circ \),

но \( \angle 4+\angle 3=180{}^\circ \) – потому, что \( \angle 3\) и \( \angle 4\) – смежные.

Ну вот и получается: \( \angle 4=\angle 1+\angle 2\).

Видишь как просто?! Но очень важно. Так что запоминай:

Сумма внутренних углов треугольника равна \( 180{}^\circ \), а внешний угол треугольника равен сумме двух внутренних, не смежных с ним.

Неравенство треугольника

Следующий факт касается не углов, а сторон треугольника.

Сумма любых двух сторон треугольника больше его третьей стороны.

Это означает, что

  • \( a+b>c\)
  • \( a+c>b\)
  • \( b+c>a\)

Ты уже догадался, почему этот факт называется неравенством треугольника?

Ну вот, а где же это неравенство треугольника может оказаться полезным?

А представь, что у тебя есть три друга: Коля, Петя и Сергей. И вот, Коля говорит: «От моего дома до Петиного \( 100\) м по прямой». А Петя: «От моего дома до дома Сергея \( 200\) метров по прямой». А Сергей: «Вам хорошо, а от моего дома до Колиного аж \( 500\) м по прямой».

Ну, тут уже ты должен сказать: «Стоп, стоп! Кто – то из вас говорит неправду!»

Так не может быть!

Почему? Да потому что если от Коли до Пети \( 100\) м, а от Пети до Сергея \( 200\) м, то от Коли до Сергея точно должно быть меньше \( 300\) (\( =100+200\)) метров – иначе и нарушается то самое неравенство треугольника.

Ну и здравый смысл точно, естественно, нарушается: ведь всякому с детства неизвестно, что путь до прямой (\( КС\)) должен быть короче, чем путь с заходом в точку \( П\). (\( К-П-С\)).

Так что неравенство треугольника просто отражает этот общеизвестный факт. Ну вот, ты теперь знаешь, как отвечать на такой, скажем, вопрос:

Бывает ли треугольник со сторонами \( 1,3,7\)?

Ты должен проверить, правда ли, что любые два числа из этих трёх в сумме больше третьего. Проверяем: \( 1+3<7\), значит, треугольника со сторонами \( 1,3\) и \( 7\) не бывает! А вот со сторонами \( 2,4,5\) – бывает, потому что

\( 2+4>5\)

\( 2+5>4\)

\( 4+5>2\)

Равенство треугольников

Ну вот, а если не один, а два или больше треугольников. Как проверишь, равны ли они? Вообще-то по определению:

Два треугольника равны, если они совпадают при наложении.

Но…это ужасно неудобное определение! Как, скажите на милость, накладывать два треугольника хотя бы даже в тетради?!

Но на наше счастье есть признаки равенства треугольников, которые позволяют действовать умом, не подвергая риску тетрадки.

Да и к тому же, отбросив легкомысленные шуточки, открою тебе секрет: для математика слово «наложить треугольники» означает вовсе не вырезать их и наложить, а сказать много-много-много слов, которые будeт доказывать, что два треугольника совпадут при наложении.

Так что ни в коем случае нельзя в работе писать «я проверил – треугольники совпадают при наложении» – тебе это не засчитают, и будут правы, потому что никто не гарантирует, что ты при наложении не ошибся, скажем, на четверть миллиметра.

Итак, какие-то математики сказали кучу слов, мы за ними эти слова повторять не будем (разве что в последнем уровне теории), а будем активно пользоваться тремя признаками равенства треугольников.

Если две стороны и угол между ними в одном треугольнике соответственно равны двум сторонам и углу между ними в другом треугольнике, то эти треугольники равны.
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.

В обиходе (математическом) приняты такие укороченные формулировки – их легче запомнить и применять:

  1. 1
    Первый признак – по двум сторонам и углу между ними;
  2. 2
    Второй признак – по двум углам и прилежащей стороне;
  3. 3
    Третий признак – по трём сторонам.
Треугольник — это геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой.

Основные понятия:

  • \( \displaystyle \angle 1\), \( \displaystyle \angle 2\), \( \displaystyle \angle 3\) – внутренние углы \( \displaystyle \triangle ABC\).
  • Внешний угол треугольника – угол, смежный внутреннему углу треугольника, т.е. \( \displaystyle \angle 4\) и \( \displaystyle \angle 5\) – внешние углы \( \displaystyle \triangle ABC\) при вершине \( \displaystyle C\).

Основные свойства:

  • Сумма внутренних углов любого треугольника равна \( \displaystyle 180{}^\circ \), т.е.
    \( \displaystyle \angle 1+\angle 2+\angle 3=180{}^\circ \)
  • Внешний угол треугольника равен сумме двух внутренних, не смежных с ним, т.е.
    \( \displaystyle \angle 4=\angle 1+\angle 2\) или \( \displaystyle \angle 5=\angle 1+\angle 2\)
  • Сумма длин любых двух сторон треугольника больше длины его третьей стороны, т.е.
    \( \displaystyle \begin{array}{l}AB+BC>AC\\AB+AC>BC\\AC+BC>AB\end{array}\)
  • В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол, т.е.
    если \( \displaystyle \angle 2>\angle 1\), то \( \displaystyle AC>BC\), и наоборот,
    если \( \displaystyle AC>BC\), то \( \displaystyle \angle 2>\angle 1\).

Признаки равенства треугольников:

1. Первый признак – по двум сторонам и углу между ними.

2. Второй признак – по двум углам и прилежащей стороне.

3. Третий признак – по трём сторонам.

P.S. Последний бесценный совет 🙂

Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ОГЭ или ЕГЭ, для поступления в 10 класс или в институт на бюджет и, самое главное, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это не главное.

Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…

Но думай сам…

Что нужно, чтобы быть наверняка лучше других на ОГЭ или ЕГЭ и быть в конечном итоге… более счастливым?

Набить руку, решая задачи.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можешь воспользоваться нашим сборником задач с подробным разбором, и мы их всячески рекомендуем, потому что они разбиты по темам, по типам и даже собраны в целую программу подготовки.

Если решишь набить руку с помощью наших задач, зайди на сайт 100gia и приобрети одну из программ.

А еще можешь зарегистрироваться и получить доступ к огромному количеству бесплатных материалов, видеоуроков, тестов.

После регистрации ты сможешь:

  • проверить свою готовность к каждому типу задач на ЕГЭ (пройдя тест);
  • подтянуть слабые места с помощью видеоуроков, вебинаров;
  • понять тему с помощью статей учебника YouClever;
  • набить руку, решая задачи и получая проверку и решения;
  • сдать пробный ЕГЭ и получить сразу оценку и разбор ошибок.

Бонус: информатика и физика.

И в заключение…

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Теперь тебе слово...

Треугольник – прекрасная фигура. И сейчас ты обрел очень много полезных знаний о ней! И решишь любую задачу. Главное – практика и старание.

Мы будем очень рады узнать твое мнение об этой статье. Напиши его в комментариях ниже и расскажи нам, понравилась ли тебе статья? Все ли было понятно?

Остались вопросы? Задай их! 

Мы обязательно ответим тебе.

Успехов!

{"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}
>